• Title/Summary/Keyword: Acoustic Characteristics

Search Result 2,195, Processing Time 0.034 seconds

Mean Velocity Distribution of Natural Stream using Entropy Concept in Jeju (엔트로피 개념을 이용한 제주도 상시하천의 평균유속분포 추정)

  • Yang, Se-Chang;Yang, Sung-Kee;Kim, Yong-Suk
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.535-544
    • /
    • 2019
  • We computed parameters that affect velocity distribution by applying Chiu's two-dimensional velocity distribution equation based on the theory of entropy probability and acoustic doppler current profiler (ADCP) of Jungmun-stream, Akgeun-stream, and Yeonoe-stream among the nine streams in Jeju Province between July 2011 and June 2015. In addition, velocity and flow were calculated using a surface image velocimeter to evaluate the parameters estimated in the velocity observation section of the streams. The mean error rate of flow based on ADCP velocity data was 16.01% with flow calculated using the conventional depth-averaged velocity conversion factor (0.85), 6.02% with flow calculated using the surface velocity and mean velocity regression factor, and 4.58% with flow calculated using Chiu's two-dimensional velocity distribution equation. If surface velocity by a non-contact velocimeter is calculated as mean velocity, the error rate increases for large streams in the inland areas of Korea. Therefore, flow can be calculated precisely by utilizing the velocity distribution equation that accounts for stream flow characteristics and velocity distribution, instead of the conventional depth-averaged conversion factor (0.85).

Analysis ofriverflow using the ADCP postprocessing software (adcptools) (ADCP 후처리 소프트웨어(adcptools)를 이용한 하천 흐름 분석)

  • Lee, Chanjoo;Kim, Jong Pil;Park, Edward;Kastner, Karl
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.103-115
    • /
    • 2016
  • At present, an acoustic Doppler current profiler (ADCP) is one of the most suitable tools for measurement of three dimensional flow characteristics in the river. The data resulting from this approach can be used for flow visualization and velocity mapping together with post-processing software tools. Among them, 'adcptools' is the latest one and provides more realistic velocity distribution in the cross-section since it uses velocity along the beam direction. In this study, a flow analysis was made using the 'adcptools' for the Amazon River and the Han River dataset. Discharge was recalculated and accuracy of discharge and velocity was evaluated. Streamwise velocity distribution and secondary flow pattern in cross-sections were visualized. Geo-referenced velocity distribution was also mapped. A summary with future prospect of 'adcptools' for studies on fluvial geomorphology is briefly given.

Remote Sound Extraction Using Laser Doppler Interferometer (레이저 도플러 간섭계를 이용한 원거리 소리 추출)

  • Hwang, Jeong-hwan
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.108-113
    • /
    • 2021
  • We propose and experimentally demonstrate a method of remote sound extraction using laser Doppler interferometry. The output frequency of a laser Doppler interferometer changes to be the same as the frequency of the acoustic wave from than object vibrated by the sound due to the Doppler effect. Based on this phenomenon, we measure the vibrational frequency of a remote target affected by a sound wave in real time, via laser Doppler interferometry. We track the peak frequency of the interferometer's output via appropriate signal processing, which confirms that the characteristics of the so detected wave are the same as that of the original sound source. We also confirm that the same method can retrieve the sound waves not only from remote sources of single tones, but from those of any sound.

Effects of water saturation time on energy dissipation and burst propensity of coal specimens

  • Yang, Xiaohan;Ren, Ting;Tan, Lihai;Remennikov, Alex
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Water infusion has long been taken as an effective way to eliminate coal burst risk as coal properties can be loosen and soften by water infusion. However, not all industrial trials of water infusion for coal burst prevention have been necessarily effective in all situations as the effectiveness of this method can be affected by water infusion time, coal properties and the parameters of water injection. Hence, some fundamental issues including the effects of water infusion time on burst propensity and energy evolution need to be further discussed. In this paper, four groups of coal specimens with 0 day, 5 days, 10 days, and 15 days water saturation time are tested under uniaxial compression load with the application of AE monitoring. To comprehensively compare the burst behavior of coal specimens under different water saturation time, stress-strain curves, AE counts, fragmentation characteristics and burst propensity of these groups are analyzed. It was found by this research that sufficient water saturation can mitigate the burst behavior of coal samples while insufficient water infusion might cannot reach the burst mitigation aims.

Stability Analysis Using the Amplitude Envelope of Dynamic Pressure in the Rocket Combustor (로켓 연소기의 동압 진폭엔벨롭을 이용한 안정성 해석)

  • Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2021
  • As a measure of susceptibility on the combustion instability, thermo-acoustic instabilities in rocket combustion system was considered for the estimation of the operational stability margin. Growth rate, which governs the asymptotic stability behavior of the system, was determined from the dynamic data measured during combustion tests in order to understand the dynamic characteristics of combustor system. Frequency transform technique was first applied to determine the system parameters such as growth rate and/or damping coefficient for an interested mode from the time series pressure data, and the PDFs of pressure amplitude were extracted from the amplitude envelope of pressure oscillation for the stochastic analysis.

Modeling of ambient noise in ocean environment using coupled mode (연성모드법을 이용한 해양 배경소음 모델링)

  • Park, Jungyong;Kwon, Hyuckjong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.397-409
    • /
    • 2022
  • A model is developed for the calculation of sea surface generated ambient noise in the range dependent ocean environment. The sources are located in the horizontal plane all around and their depths are at the near-surface. The receiver array is located in the range dependent ocean waveguide. One-way coupled mode method is used to model the acoustic propagation between the sources and receiver in the range dependent waveguide, and the cross spectral density matrix of noise is derived. In simulation, noise intensity, beamforming result and coherence function are calculated from the cross spectral density matrix. These results are compared with those in the range independent environment. The modeling result shows the effect of the vertical directionality and asymmetry characteristics of the horizontal plane.

Acoustic scattering characteristics of chub mackerel (Scomber japonicus) by KRM model (KRM 모델을 이용한 고등어(Scomber japonicus)의 음향산란특성 규명)

  • PARK, Geunchang;OH, Wooseok;OH, Sunyoung;LEE, Kyounghoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.32-38
    • /
    • 2022
  • In this study, Target strength for multi-frequency (38 kHz, 70 kHz, 120 kHz and 200 kHz) of chub mackerel (Scomber japonicus) was estimated using by the KRM model. The body shape of the Chub mackerel was described by an X-ray system and the body length of 20 individuals ranged from 16 cm to 28 cm. The swimbladder tilt angle ranged between -8 and -14°, the maximum TS value according to the swimming angle of chub mackerel was -33.0 dB at -11°. The averaged TScm according to fork length was -66.02 dB at 38 kHz, -66.50 dB at 70 kHz, -66.00 dB at 120 kHz and -67.35 dB at 200kHz, respectively.

Effects of Stabilization Exercise Combined with Vibroacoustic Sound on Pain and Muscle Tone in Chronic Neck Pain patients : A Randomized Controlled Trial

  • Jung, Seung-Hwa;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.321-328
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effect of neck stabilization exercise combined with vibroacoustic sound on patients with chronic neck pain and tension-type headache. Design: Two group pre test - post test design. Methods: 36 patients participated. Headache impact test-6(HIT-6), numerical rating scale(NRS) and muscle characteristics were measured at pre-post test. Participants divided into vibroacoustic sound group(VSG, n=18), control group(CG, n=18). VSG performed neck stabilization exercise and vibroacoustic sound stimulation. CG performed neck stabilization exercise. Both groups participated 3 times a week for a total of 4 weeks. Results: NRS showed a significant difference before and after intervention in both groups (p<0.05). HIT-6 showed a significant difference before and after intervention in the VSG group (p<0.05). Muscle tone showed a significant difference before and after intervention in the experimental group (p<0.05). There was no significant difference in muscle stiffness and muscle elasticity before and after the intervention in both groups (p>0.05). Conclusions: Based on the results of the study, it is thought that sonic vibroacoustic sound can be established as an effective treatment tool through a study applied to various diseases and symptoms.

A Geoacoustic Model at the YMGR-102 Long-core Site in the Middle of the Yellow Sea

  • Ryang, Woo-Hun;Kim, Seong-Pil
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.520-531
    • /
    • 2022
  • The Yellow Sea experienced glacio-eustasy sea-level fluctuations during the Quaternary period. In the middle part of the Yellow Sea, the Quaternary successions were accumulated by alternating terrestrial, paralic, and shallow marine deposits that reflected the fluctuating sea levels. A long core of 69.2 m was acquired at the YMGR-102 site (33°50.1782'N and 123°48.3019'E) at a depth of 72.5 m in the middle of the Yellow Sea. A four-layered geoacoustic model was reconstructed for the sedimentary succession. It was based on seismic characteristics from 3.5 kHz SBP and air-gun seismic profiles and 96 grain-size properties in the core sample from YMGR-102. For the underwater simulation and experiments, the in-situ P-wave speeds were calculated using the sound speed ratio of the Hamilton method. The geoacoustic model of YMGR-102 can contribute to the reconstruction of geoacoustic models, reflecting the vertical and lateral variability of the acoustic properties in the continental shelf of the middle Yellow Sea.

Wind Effects on Tall Buildings with a Porous Double-Skin Façade

  • Shengyu Tian;Cassandra Brigden;Caroline Kingsford;Gang Hu;Robert Ong;K.C.S. Kwok
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.265-276
    • /
    • 2022
  • Double-Skin Facades (DSF) on tall buildings are becoming increasingly common in urban environments due to their ability to provide architectural merit, passive design, acoustic control and even improved structural efficiency. This study aims to understand the effects of porous DSF on the aerodynamic characteristics of tall buildings using wind tunnel tests. High Frequency Force Balance and pressure tests were performed on the CAARC standard tall building model with a variable porous DSF on the windward face. The introduction of a porous DSF did not adversely affect the overall mean forces and moments experienced by the building, with few differences compared to the standard tall building model. There was also minimal variation between the results for the three porosities tested: 50%, 65% and 80%. The presence of a full-height porous DSF was shown to effectively reduce the mean and fluctuating wind pressure on the side face of the building by about 10%, and a porous DSF over the lower half height of the building was almost as effective. This indicates that the porous DSF could be used to reduce the design load on cladding and fixtures on the side faces of tall buildings, where most damage to facades typically occurs.