• Title/Summary/Keyword: Acidification degree

Search Result 19, Processing Time 0.024 seconds

Isolation and Characterization of Endosome Subpopulation in Chinese Hamster Ovarian Cells

  • Suh, Duk-Joon;Park, Mi-Yeon;Jung, Dong-Keun;Bae, Hae-Rahn
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.197-208
    • /
    • 1996
  • Endosomes lower their internal pH by an ATP-driven proton pump, which is critical to dissociation of many receptor-ligand complexes, the first step in the intracellular sorting of internalized receptors and ligands. Endosomes are known to exhibit n great range of pH values that can vary between 5.0 and 7.0 within a single cell although the factors that regulate endosomal pH remain uncertain. To evaluate the morphological and topological differences of endosomes in the different stages, confocal microscopy was used. The early endosomes labeled with fluorescein isothiocyanate-dextran for 10 min at $37^{\circ}C$ were identifiable at the peripheral and tubule-vesicular endosome compartment. In contrast, the late endosomes formed by 10 min pulse and 20 min trace were located deeper in the cytoplasm and showed more vesicular features than early endosomes. For the purpose of determining whether ATP-dependent acidification was heterogeneous and whether the differences in acidification were attributed to differences in the activity of $Na^{+}-K^{+}$-ATPase and/or $Cl^{-}$ channel, endocytic compartments were fractionated into subpopulation using percoll gradient and measured ATP-dependent acidification. While all fractions exhibited ATP-dependent acidification activity, both the initial rate of acidification and extent of proton translocation were lower in early endosomes and gradually increased in late endosomes. Phosphorylation by PKA and ATP enhanced ATP-dependent acidification in both early and late endosomes, hut there was no difference in the degree of enhancement by phosphorylation between two subpopulations. When ATP-dependent acidification was determined in the presence or absence of vanadate ($Na_{3}VO_{4}$) or ouabain, only early endosomes exhibited the vanadate or ouabain dependent stimulation of acidification activity, suggesting the inhibition of $Na^{+}-K^{+}$-ATPase. Therefore, it seems probable that the inhibition of early endosome acidification by $Na^{+}-K^{+}$-ATPase observed in vitro at least in part plays a physiological role in controlling the acidification of early endosomes in vivo.

  • PDF

PHOSPHATE-DEFICIENCY REDUCES THE ELECTRON TRANSPORT CAPACITIES OF THYLAKOID MEMBRANES THROUGH LIMITING PHOTOSYSTEM II IN LEAVES OF CHINESE CABBAGE

  • Park, Youn-Il;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • v.1 no.2
    • /
    • pp.95-105
    • /
    • 1994
  • Experiments were carried out to investigate whether P, deficiency in detached 25 mM mannose-feeding led to a decline of the photosynthetic electron transport rates through acidification of the thylakoid lumen. With increasing mannose-feeding time, the maximal CO2 exchange rates and the maximal quantum yields of photosynthesis decreased rapidly up to 6 h by 73% then with little decrease up to 12 h. The ATP/ADP ratio declined by 54% 6 h after the treatment and then recovered to the control level at 12 h. However, the NADPH/NADP~ ratio was not significantly altered by mannose treatment. Electron transport rates of thylakoid membranes isolated from 6 h treated leaves did not change, but they decreased by 30% in 12 h treated leaves. The quenching analysis of Chl fluorescence in mannose-treated leaves revealed that both the fraction of reduced plastoquinone and the degree of acidification of thylakoid lumen remained higher than those of the control. The reduction of PSI in mannose fed leaves was inhibited due to acidification of thylakoid lumen (high qE). The reduction of primary quinone acceptor of PSII was inhibited by mannose feeding. Mannose treatment decreased the efficiency of excitation energy capture by PSII. Fo quenching was induced when treated with mannose more than 6 h, and had a reverse linear correlation with (Fv)m/Fm ratio. These results suggest that Pi deficiency in Chinese cabbage leaves reduce photosynthetic electron transport rates by diminishing both PSII function and electron transfer from PSII to PSI through acidification ofthylakoid lumen, which in turn induce the modification of photosynthetic apparatus probably through protein (de)phosphorylation.

  • PDF

Effect of Carbon Dioxide Concentration on Malate and Titratable Acidity in Pereskia aculeata and Kalanchoe rosea

  • Park Shin Young;Furukawa Akio
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.109-114
    • /
    • 1998
  • The induction of crassulacean acid metabolism(CAM) characterized by day/night acid fluctuation was investigated in leaves from 10 days exposure to elevated $CO_2$ concentration(1,000 ${\mu}L\;L^{-1}CO_2).$ For Pereskia aculeata, have $C_3-like$ gas exchange pattern in well watered condition and shift into CAM-like in water stress, showed a more typical CAM-like diurnal acid fluctuation. Whereas the massive diurnal fluctuation of acidity in typical CAM of Kalanchoe rosea was declined. The effect of short-term exposure to various concentrations of $CO_2$ on titratable acidity in P. aculeata and K. rosea was also investigated. To investigate the response of various $CO_2$ concentrations, four different $CO_2$ levels(350, 700, 1,000 and 1,500 ${\mu}L\;L^{-1})$ were imposed for 24hr and measured the titratable acidity at 06:00, when the acidity was maximum, and 14:00, when the acidity was minimum. The accumulation of acid in P. aculeata was enhanced markedly by higher concentration of $CO_2,$ while the level of acidity in f rosea did not highly respond to $CO_2.$ A notable difference between P. aculeata and K. rosea was the response of de-acidification to a higher concentration of $CO_2$ Increasing with $CO_2,$ the degree of do-acidification of P. auleata was increased while that of K. rosea was depressed.

  • PDF

Energy production from organic waste by anaerobic treatment (I) : Hydrogen production from food waste (혐기성 처리에 의한 유기성 폐기물 에너지화 (I) : 음식폐기물의 수소화)

  • Han, Sun-Kee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.102-108
    • /
    • 2011
  • Characteristics of hydrogen production from various food wastes in anaerobic batch reactors were evaluated to assess the energy potential of organic wastes. Organic wastes which were used in this study were scallion as vegetable, apple as fruit, rice as grain and pork as meat. Ultimate hydrogen yield of scallion, apple, rice and pork were 0.46, 0.47, 0.62 and $0.05mol\;H_2/mol\;hexose$, respectively. On the other hand, hydrogen production rates of scallion, apple, rice and pork were 0.013, 0.021, 0.014 and $0.005mol\;H_2/mol\;hexose/h$, respectively. These results indicated that anaerobic hydrogen fermentation from food waste except for meat was effective in removing organic material as well as producing renewable energy. Volatile fatty acids increased as hydraulic retention time was increased. In the hydrogen fermentation, acidification degree of rice was measured as the highest rate of 75.8% whereas pork was found as the lowest rate of 35.2%.

Modifications of Skim Milk Protein by Meju Protease and Its Effect on Acid Clotting and Digestibility (메주 단백질 가수분해 효소 처리가 탈지 우유 단백질의 응고물 형성 및 소화율에 미치는 영향)

  • 이진실
    • Journal of Nutrition and Health
    • /
    • v.26 no.8
    • /
    • pp.998-1005
    • /
    • 1993
  • This study was attempted to investigate the effects of enzymatic modification of milk protein with Meju protease on its acid clotting and digestibility. The proteases used in this study were isolated from Meju(fermented soybeans) and had specific acticity of 250 units/mg protein at pH 7.0. These proteases were found to be at least 3 different isoenzymes of different pH optima(pH 4.0, 6.0, 10.0). The optimum temperature was 5$0^{\circ}C$. Hydrolyzed skim milk showed 30.5% degree of hydrolysis for 1 hr. and 36.4% degree of hydrolysis for 3.5 hrs. of protease treatment at pH 7.0. Upon acidification to pH 4.0, skim milk produced large and dense coagulum, but the coagulum was getting smaller by protease treatment. Generally, digestability of skim milk at pH 4.0 was lower than pH 2.0. At pH 4.0, native skim milk and control group had problem with hydrolysis of skim milk protein. Among protease treated groups, 1 hour treated skim milk was most effectively hyrolyzed at pH 4.0.

  • PDF

Ammonia Production from Yeast Extract and Its Effect on Growth of the Hyperthermophilic Archaeon Sulfolobus solfataricus

  • Park, Chan-Beum;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.115-118
    • /
    • 1998
  • Utilization of yeast extract and formation of byproduct metabolite were investigated for hyperthermophilic archaeon Sulfolobus solfataricus (DSH 1617). In both batch and fed-batch cultivations of S. solfataricus, maximal cell density, {{{{ { NH}`_{4 } ^{ +} }}} ion production and pH change were highly dependent on the ratio of yeast extract to glucose in the medium. Variation of {{{{ { NH}`_{4 } ^{ +} }}}} ion level was identified as a major cause of pH change during cultivation, and acidification of culture broth was attributed to consumption of {{{{ { NH}`_{4 } ^{ +} }}}} ions rather than formation of acid byproducts. It was also observed that increase of {{{{ { NH}`_{4 } ^{ +} }}}} ion concentrations in the medium resulted in greater degree of growth inhibition.

  • PDF

Induction of Kanamycin Resistance Gene of Plasmid pUCD615 by Benzoic Acid and Phenols

  • Mitchell Robert J.;Hong Han-Na;Gu Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1125-1131
    • /
    • 2006
  • A kan'::luxCDABE fusion strain that was both highly bioluminescent and responsive to benzoic acid was constructed by transforming E. coli strain W3110 with the plasmid pUCDK, which was constructed by digesting and removing the 7-kb KpnI fragment from the promoterless luxCDABE plasmid pUCD615. Experiments using buffered media showed that this induction was dependent on the pH of the media, which influences the degree of benzoic acid protonation, and the expression levels seen are likely due to acidification of the cytoplasm by uncoupling of benzoic acid. Consequently, the sensitivity of this strain for benzoic acid was increased by nearly 20-fold when the pH was shifted from 8.0 to 6.5. Benzoic acid derivatives and several phenolics also resulted in significantly increased bioluminescent signals. Although these compounds are known to damage membranes and induce the heat-shock response within E. coli, bacterial strains harboring mutations in the fadR and rpoH genes, which are responsible for fatty acid biosynthesis during membrane stress and induction of the heat-shock response, respectively, showed that these mutations had no effect on the responses observed.

Composting using the Lime Stabilization of Dewatering Sludge from Centralized Swine Wastewater Treatment Facility (석회안정화 방법을 이용한 돈사분뇨공공처리시설에서 발생하는 탈수슬러지의 퇴비화)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.687-694
    • /
    • 2006
  • Dewatering sludge using inorganic chemicals with polymer has been evaded for reuse on account of the risks of high heavy metals contained and soil acidification. Composting feasibility of coagulation & dewatering sludges produced from livestock waste treatment plant was investigated. The results of analysis prove that dewatering sludge is valuable matter with suitable elements for composting if high quality ferric chloride ($FeCl_3$) is used for coagulation & dewatering process. In pot-cultivation of harvestes, using effects of dewatering sludge improved with lime treatment was very effective. The results of pot-cultivation proved that harms of crops according to different acid tolerances were not detected. But it was not applied to crops with weak acid tolerance or greenhouse for free from gas damage. Also, Further studies and monitorings are necessary to use sludges because results of pot-cultivation were generated differently by characteristics of soil, nutrient demand of plants, mature degree of sludge, consecutive cultivation and etc.

The Antioxidant Ability and Nitrite Scavenging Ability of Poria cocos (복령(Poria cocos) 균사체의 항산화성 및 아질산염 소거작용)

  • 김대곤;손동화;최웅규;조영석;김수민
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.1097-1101
    • /
    • 2002
  • This study was conducted to investigate the efficacy of antioxidant ability and nitrite scavenging ability of Poria cocos Poria cocos mycelium and Poria cocos fermented with rice were extracted with water and ethanol for measurement of degree of fat acidification against fish oil. Lower TBARS values of Poria cocos mycelium and Poria cocos fermented with rice were shown compared with control. Iron chelating ability of Poria cocos mycelium against Fe$^{2+}$, Cu$^{2+}$ was higher than Poria cocos fermented with rice. Electron donating abilitv of water extract and ethanol extract of Poria cocos mycelium were 76.8% and 79.9%, respectively. Higher nitrite scavenging ability was shown at ethanol extract than water extract of Poria cocos mycelium.ium.

A role of Sodium Bicarbonate Cotransporter(NBC) in $HCO_3^-$ Formation in Human Salivary Gland Acinar Cells

  • Jin, Mee-Hyun;Koo, Na-Youn;Jin, Mei-Hong;Hwang, Sung-Min;Park, Kyung-Pyo
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.143-147
    • /
    • 2008
  • The sodium bicarbonate cotransporter (NBC) protein is functionally expressed in salivary glands. In this experiment, we examined the role of NBC in $HCO_3^-$ formation in human parotid gland acinar cells. Intracellular pH (pHi) was measured in 2'-7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF)-loaded cells. Acetazolamide (0.1 mM) and 4,4'-diisothio cyanatostilbene-2,2'-disulphonic acid (DIDS, 0.5 mM) were used as specific inhibitors of carbonic anhydrase and NBC, respectively. The degree of inhibition was assessed by measuring the pHi recovery rate (${\Delta}pHi$/min) after cell acidification using an ammonium prepulse technique. In control experiments, ${\Delta}pHi$/min was $1.40{\pm}0.06$. Treatment of cells with 0.5 mM DIDS or 0.1 mM acetazolamide significantly reduced ${\Delta}pHi$/min to $1.14{\pm}0.14$ and $0.74{\pm}0.15$, respectively. Simultaneous application of DIDS and acetazolamide further reduced ${\Delta}pHi$/min to $0.47{\pm}0.10$. Therefore, DIDS and acetazolamide reduced ${\Delta}pHi$/min by 19% and 47%, respectively, while simultaneous application of both DIDS and acetazolamide caused a reduction in ${\Delta}pHi$/min of 67%. These results suggest that in addition to carbonic anhydrase, NBC also partially contributes to $HCO_3^-$ formation in human parotid gland acinar cells.