A role of Sodium Bicarbonate Cotransporter(NBC) in $HCO_3^-$ Formation in Human Salivary Gland Acinar Cells

  • Jin, Mee-Hyun (Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute,) ;
  • Koo, Na-Youn (Department of Physiology, School of Dentistry, Seoul National University) ;
  • Jin, Mei-Hong (Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute,) ;
  • Hwang, Sung-Min (Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute,) ;
  • Park, Kyung-Pyo (Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute,)
  • Published : 2008.12.31

Abstract

The sodium bicarbonate cotransporter (NBC) protein is functionally expressed in salivary glands. In this experiment, we examined the role of NBC in $HCO_3^-$ formation in human parotid gland acinar cells. Intracellular pH (pHi) was measured in 2'-7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF)-loaded cells. Acetazolamide (0.1 mM) and 4,4'-diisothio cyanatostilbene-2,2'-disulphonic acid (DIDS, 0.5 mM) were used as specific inhibitors of carbonic anhydrase and NBC, respectively. The degree of inhibition was assessed by measuring the pHi recovery rate (${\Delta}pHi$/min) after cell acidification using an ammonium prepulse technique. In control experiments, ${\Delta}pHi$/min was $1.40{\pm}0.06$. Treatment of cells with 0.5 mM DIDS or 0.1 mM acetazolamide significantly reduced ${\Delta}pHi$/min to $1.14{\pm}0.14$ and $0.74{\pm}0.15$, respectively. Simultaneous application of DIDS and acetazolamide further reduced ${\Delta}pHi$/min to $0.47{\pm}0.10$. Therefore, DIDS and acetazolamide reduced ${\Delta}pHi$/min by 19% and 47%, respectively, while simultaneous application of both DIDS and acetazolamide caused a reduction in ${\Delta}pHi$/min of 67%. These results suggest that in addition to carbonic anhydrase, NBC also partially contributes to $HCO_3^-$ formation in human parotid gland acinar cells.

Keywords

References

  1. Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I. Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem. 1998;273:17689-95 https://doi.org/10.1074/jbc.273.28.17689
  2. Beal AM. The effect of carbonic anhydrase inhibitors on secretion by the parotid and mandibular glands of red kangaroos, Macropus rufus. J Comp Physiol. 1991;161:611-9 https://doi.org/10.1007/BF00260752
  3. Bevensee MO, Schmitt BM, Choi I, Romero MF, Boron WF. An electrogenic $Na^+$-$HCO_3^-$ cotransporter (NBC) with a novel $COOH^-$ terminus, cloned from rat brain. Am J Physiol Cell Physiol. 2000;278:C1200-11 https://doi.org/10.1152/ajpcell.2000.278.6.C1200
  4. Choi SY, Li J, Jo SH, Lee SJ, Oh SB, Kim JS, Lee JH, Park K. Desipramine inhibits $Na^+$ /$H^+$ exchange in human submandibular cells. J Dent Res. 2006;85:839-43 https://doi.org/10.1177/154405910608500912
  5. Evans RL, Bell SM, Schultheis PJ, Shull GE, Melvin JE. Targeted disruption of the Nhel gene prevents muscarinic agonist-induced up-regulation of $Na^+$ /$H^+$ exchange in mouse parotid acinar cells. J Biol Chem. 1999;274:29025-30 https://doi.org/10.1074/jbc.274.41.29025
  6. Gresz V, Kwon TH, Vorum H, Zelles T, Kurtz I, Steward MC, Aalkjaer C, Nielsen S. Immunolocalization of electroneutral $Na^+$ -HCO cotransporters in hyman and rat salivary glands. Am J Physiol Gastrointest Liver Physiol. 2002;283:G473-80 https://doi.org/10.1152/ajpgi.00421.2001
  7. Gross E, Hopfer U. Activity and stoichiometry of $Na^+$ :HCO-cotransport in immortalized renal proximal tubule cells. J Membr Biol 1996;152:245-52 https://doi.org/10.1007/s002329900102
  8. Helm JF, Dodds WJ, Hogan WJ, Soergel KH, Egide MS, Wood CM. Acid neutralizing capacity of human saliva. Gastroenterology. 1982;83:69-74
  9. Kim YB, Yang BH, Zhang GP, Oh SB, Kim JS, Park K. Expression of $Na^+$/$HCO_3^-$ cotransporter and its role in pH regulation in mouse parotid acinar cells. Biochem Biophys Res Commun. 2003;304:593-8 https://doi.org/10.1016/S0006-291X(03)00632-6
  10. Koo NY, Li J, Hwang SM, Choi SY, Lee SJ, Oh SB, Kim JS, Lee JH, Park K. Molecular cloning and functional expression of a sodium bicarbonate cotransporter from guinea-pig parotid glands. Biochem Biophys Res Commun. 2006;342:1114-22 https://doi.org/10.1016/j.bbrc.2006.02.064
  11. Kwon TH, Pushkin A, Abuladze N, Nielsen S, Kurtz I. Immunoelectron microscopic localization of NBC3 sodiumbicarbonate cotransporter in rat kidney. Am J Physiol Renal Physiol. 2000;278:F327-36 https://doi.org/10.1152/ajprenal.2000.278.2.F327
  12. Lee JE, Nam JH, Kim SJ. Muscarinic activation of $Na^+$-dependent ion transporters and modulation by bicarbonate in rat submandibular gland acinus. Am J Physiol Gastrointest Liver Physiol. 2005;288:G822-31 https://doi.org/10.1152/ajpgi.00406.2004
  13. Lee SI, Turner RJ. Secretagogue-induced $86Rb^+$ efflux from bovine parotid is HCO-dependent. Am J Physiol. 1993;264:R162-8
  14. Li J, Koo NY, Cho IH, Kwon TH, Choi SY, Lee SJ, Oh SB, Kim JS, Park K. Expression of the $Na^+$-$HCO_3^-$ cotransporter and its role in pH regulation in guinea pig salivary glands. Am J physiol Gastrointest Liver Physiol. 2006;291:G1031-40 https://doi.org/10.1152/ajpgi.00483.2005
  15. Luo X, Choi JY, Ko SBH, Pushkin A, Kurtz I, Ahn W, Lee MG, Muallem S. $HCO_3^-$ salvage mechanisms in the submandibular gland acinar and duct cells. J Biol Chem. 2001;276:9808-16 https://doi.org/10.1074/jbc.M008548200
  16. Nakamoto T, Srivastava A, Romanenko VG, Ovitt CE, Perez-Cornejo P, Arreola J, Begenisich T, Melvin JE. Functional and molecular characterization of the fluid secretion mechanism in human parotid acinar cells. Am J physiol Regul Integr Comp Phsiol. 2007;292:R2380-90 https://doi.org/10.1152/ajpregu.00591.2006
  17. Nauntofte B. Regulation of electrolyte and fluid secretion in salivary acinar cells. Am Pysiol Gastrointest Liver Physiol 1992;263:G823-37 https://doi.org/10.1152/ajpgi.1992.263.6.G823
  18. Nguyen HV, Stuart-Tilley A, Alper SL, Melvin JE. $C1^-$/$HCO_3^-$ exchange is acetazolamide sensitive and activated by a muscarinic receptor-induced $Ca^2+_i$ increase in salivary acinar cells. Am J physiol Gastrointest Liver Physiol. 2004;286:G312-20 https://doi.org/10.1152/ajpgi.00158.2003
  19. Novak I, Young JA. Two independent anion transport systems in rabbit mandibular salivary glands. Pflugers Arch. 1986;407:649-56 https://doi.org/10.1007/BF00582647
  20. Park K, Hurley PT, Roussa E, Cooper GJ, Smith CP, Thevenod F, Steward MC, Case RM. Expression of a sodium bicarbonate cotransporter in human parotis salivary glands. Arch Oral Biol. 2002;47:1-9 https://doi.org/10.1016/S0003-9969(01)00098-X
  21. Park KR, Chang HS, Richardson LA, LEE YI, Choi J, Melvin JE. Characterization of ion transporter proteins expressed in rat parotid acinar cell line, Par-C10. International Journal of oral biology. 2001;26:57-62
  22. Poronnik P, Schumann SY, Cook DI. HCO3- dependent AChactivated $Na^+$ influx in sheep parotid secretory endpieces. Pflugers Arch. 1995;429:852-8 https://doi.org/10.1007/BF00374810
  23. Romero MF, Hediger MA, Boulpaep EL, Boron WF. Expression cloning and characterization of a renal electrogenic $Na^+$/HCO cotransporter. Nature. 1997;387: 409-13 https://doi.org/10.1038/387409a0
  24. Roussa E, Romero MF, Schmitt BM, Boron WF, Alper SL, Thevenod F. Immunolocalization of anion exchanger AE2 and $Na^+$-$HCO_3^-$ cotransporter in rat parotid and submandibular glands. Am J Physiol. 1999;277:G1288-96