• Title/Summary/Keyword: Acidic drug

Search Result 108, Processing Time 0.044 seconds

Determination of Acidic Drug with ISEs Using Ternary Complex of Metal-di-2-pyridyl Ketone Oxime-acidic Drug as Ion-Exchanger (이온교환체로서 금속-디-2-피리딜케톤옥심-산성의약품 3원 착물을 이용한 산성의약품의 정량)

  • 안문규;오원정;이언경;이순영;이재윤;정문모;허문회
    • YAKHAK HOEJI
    • /
    • v.46 no.5
    • /
    • pp.320-323
    • /
    • 2002
  • A method for the determination of acidic drug, mefenamic acid and ibuprofen with ion-selective electrode(ISE) using Fe(II)-di-2-pyridyl ketone oxime complex as a counter ion were developed. Benzyl-2-nitrophenyl ether(BNPE) plasticized membrane was more selective and sensitive than the other tested membranes. The acidic drug selective electrode exhibits a linear response for 10$^{-2}$ M 510$^{-5}$ M of acidic drugs, mefenamic acid and ibuprofen with a slope of -55.9 and -56.3 mV/dec. in borate buffer solution (pH 8.9). Potentiometric selectivity measurements revealed negligible interferences from aromatic and aliphatic carboxylic acid salts. The electrodes were found to be useful for the direct determination of mefenamic acid and ibuprofen in pharmaceutical preparations.

Reduced Addamycin Cytotoxicity in RIF-1 Multicell Spheroid Due to an Acidic Microenvironment

  • Um, Kyung-Il;Cheston, Sally B.;Suntharalingam, Mohan;Rhee, Juong-G.
    • Environmental Mutagens and Carcinogens
    • /
    • v.17 no.1
    • /
    • pp.7-11
    • /
    • 1997
  • Variations in adriamycin uptake and cytotoxicity were studied in tumor cells that were grown in different growth states and microenvironments. RIF-1 tumor cells were maintained in an RPMI 1640 medium, and grown in either a monolayer or multicell spheroids. For exponentially growing cells, adriamycin cytotoxicity increased with increased dosage up to 2.5 $\mu$g/ml, and this cytotoxicity was reduced when the cells were grown in a plateau phase or in an acidic microenvironment (pH 6.6). This reduced cytotoxicity was correlated with the uptake of the drug. For multicell spheroids, the cytotoxicity of the drug was reduced dramatically, and this reduction was also correlated with a reduced uptake of the drug and an acidic pH inside of the spheroids. When the drug cytotoxicity was evaluated at different locations within the spheroids, the cells in the inner regions were least affected by the drug, suggesting that both an acidic microenvironment and noncycling plateau phase cells are contributing factors in decreasing the efficacy of the drug in an organized tissue, such as multicell spheroids.

  • PDF

Drug Release Characteristics of Famotidine-Cationic Exchange Resin Complexes and Their Pharmacokinetics in Rats (파모티딘-양이온 교환수지 복합체의 약물방출 특성 및 흰쥐에서의 체내동태)

  • Shin, Dong-Sun;Song, Woo-Heon;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.313-321
    • /
    • 1997
  • Ion exchange resin complexes of famotidine have been prepared by the reaction of famotidine solution with activated ion exchange resins. Complex formation efficiency between famotidine and ion exchange resin was about $80{\sim}90%$ in average, calculated by HPLC determination. Drug release characteristics from the resin complexes were evaluated by the modified percolation method. Famotidine release was dependent on the type of ion exchange resins. In the case of weakly acidic resin complexes, the cumulative released amount of famotidine was more than 90% for 1hr in pH 1.2 buffer solution. However, in the case of strongly acidic resin complexes, it was less than 5% for 3hr in the same medium. Strongly acidic resins revealed some advantages over weakly, acidic resins for overcoming instability of famotidine in gastric juice. In addition, strongly acidic resin complexes showed controlled release of famotidine in pH 6.8 buffer solution, showing the result of about 60 to 70% of drug release for 5hr. After oral administrations of famotidine-resin complexes to rats as dose of 40 mg equivalent/kg, the pharmacokinetic parameters of famotidine were obtained by model independent analysis and compared with those of famotidine solution or suspension. $C_{max}$ of famotidine-resin complex was lower than that of famotidine solution or suspension. MRT, MAT, and MDT of the complexes were greater than those of famotidine solution or suspension. From these results, it was expected that famotidine was released slowly from the complexes and absorbed continuously into systemic circulation. It was recognized that drug release from the complexes was the rate-limiting step in drug absorption, since there were close correlations between in vitro drug release and in vivo pharmacokinetic parameters.

  • PDF

Role of Endogenous Transport Systems for the Transport of Basic and Acidic Drugs at Blood-Brain Barrier (염기성 및 산성 약물의 혈액-뇌관문 투과에 관여하는 내인적 수송계)

  • Kang, Young-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • The endothelial cell of brain capillary called the blood-brain barrier (BBB) has carrier-mediated transport systems for nutrients and drugs. The mechanism of the BBB transport of basic and acidic drugs has been reviewed and examined for endogenous transport systems in BBB in WKY and SHRSP. Acidic drugs such as salicylic acid and basic drugs such as eperisone are taken up in a carrier mediated manner through the BBB via the monocarboxylic acid and amine transport systems. The specific dysfunction for the choline transport at the BBB in SHRSP would affect the function of the brain endothelial cell and brain parenchymal cell. The utilization of the endogenous transport systems of monocarboxylic acid and amine could be promising strategy for the effective drug delivery to the brain.

  • PDF

Conditioning of the Extraction of Acidic Polysaccharide from Red Ginseng Marc (홍삼박으로부터 산성다당체의 최적 추출 조건 분석)

  • Chang, Eun-Ju;Park, Tae-Kyu;Han, Yong-Nam;Hwang, Keum-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.1
    • /
    • pp.56-61
    • /
    • 2007
  • This study was carried out to investigate the optimum conditions for extraction of acidic polysaccharides from red ginseng marc produced by manufacturing alcoholic extract from red ginseng. Method of carbazole-sulfuric acid was applied to determine the amount of acidic polysaccharides in red ginseng marc. The amounts of acidic polysaccharides in water extract of red ginseng marc were increased with increasing extraction temperature. The contents of acidic polysaccharides were not significantly different despite of the extraction time increasing from 6 hours to 48 hours. The contents of starch in water-extract of red ginseng marc were increased with increasing extraction temperature. The starch amounts in water extract of red ginseng marc extracted for 48 hours were increased. The yields of polysaccharide precipitated from water-extract of red ginseng marc were increased with increasing extraction temperature. The hydration rate of acidic polysaccharides and starch from water-extract of red ginseng marc were decreased with increasing extraction temperature. The contents of starch were not significantly different despite of the extraction time increasing from 6 hours to 48 hours at $8^{\circ}C$. However, the rehydration rate of acidic polysaccharide for 48 hours were decreased at $8^{\circ}C$. The rehydration rate of acidic polysaccharide and starch extracted from 6 hours to 24 hours at $25^{\circ}C$ were not significantly different, but those extracted for 48 hours were increased. From the above results, we suggest that by altering the extraction conditions in red ginseng marc it is possible to develop optimum conditions for extraction that modulate the proportions of acidic polysaccharide and starch.

Potentiometric Characteristics of Metal(II)- Triethylene tetramine-Acidic Drug Membrane Electrodes

  • Ahn, Moon-Kyu;Lee, Eon-Kyung;Lee, Soon-Young;Oh, Won-Jung;Jung, Young-Sim;Seok, Ji-Won;Lee, Jae-Yun;Hur, Moon-Hye
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.401.1-401.1
    • /
    • 2002
  • Potentiometric sensors are important and viable devices for use in pharmaceutical analysis. liquid polymeric membrane electrodes for many basic drugs and a few acidic drug were reported. The acidic drug-metal(Ⅱ)-triethylene tetramine ion pair complexes were prepared and used in poly(vinyl chloride) membrane electrodes to analyze anionic drugs such as mefenamic acid and ibuprofen. Metal ion used were Fe2+. Co2+. Ni2+ and Cu2+. Plasticizer used was o-nitrophenyl octyl ether.. (omitted)

  • PDF

Bioavailabilities of Omeprazole Administered to Rats through Various Routes

  • Choi, Mi-Sook;Lee, Young-Hee;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.18 no.3
    • /
    • pp.141-145
    • /
    • 1995
  • Omeprazole, a proton pump inhibitor, was given intravenously (iv), orally (po), intraperitoneally (ip), hepatoportalvenously (pv), and intrarectally (ir) to rats at a dose of 72mg/kg in order to investigate the bioavailability of the drug, The extent of bioavailabilities of omeprazole administered through pv, ip, po, and ir routes were 88.5, 79.4, 40,8, and 38.7%, respectively. Pharmacokinetic analysis in this study and literatures (Regardh et al., 1985 : Watanabe et al., 1994) implied significant dose-dependency in hepatic first-pass metabolism, clearance and distribution, and acidic degradation in gastric fluid. The high bioavailability from the pv administration (88.5%) means that only 11.5% of dose was extracted by the first-pass metabolism through the liver at this dose (72 mg/kg). The low bioavailability from the oral administration (40.8%) in spite of minor hepatic first-pass extraction indicates low transport of the drug from GI lumen to portal vein. From the literature (Pilbrant and Cederberg, 1985), acidic degradation in gastric fluid was considered to be the major cause of the low transport. Thus, enteric coating of oral preparations would enhance the oral bioavailability substantially. The bioavailability of the drug from the rectal route, in which acidic degradation and hepatic first-pass metabolism may not occur, was low (38.7%) but comparable to that from the oral route (40.8 %) indicating poor transport across the rectal membrane. In this case, addition of an appropriate absorption enhancer would improve the bioavailability. Rectal route seems to be an possible alternative to the conventional oral route for omeprazole administration.

  • PDF

An Extract from Hydrolyzed Normal Human Urine which Induces Drug Binding Defects (정상인뇨의 가수분해에 의한 의약품결합 저해유도인자의 추출)

  • 장판섭
    • YAKHAK HOEJI
    • /
    • v.26 no.4
    • /
    • pp.223-229
    • /
    • 1982
  • Uremia is associated with defective protein binding of weakly acidic drugs, whereas the protein binding of basic drugs tends to be normal. The exact chemical nature of compound(s) and mechanism for these changes as yet is unknown, and has not been defined. Organic solvent extraction of pooled normal human urine following hydrolysis by hydrochloric acid produced an extract, which when added to normal human serum, was capable of inducing binding defects similar to those in uremia. Binding defects were observed with the weakly acidic drugs such as nafcillin, salicylate, sulfamethoxazole and phenytoin while the binding of the basic drugs such as trimethoprim and quinidine were unaffected. The binding defects induced by the hydrolyzed urine extract could readily be corrected by same organic solvent extraction of acidified serum and the defects could be transferred to the normal human serum using the organic solvent layer at the physiologic pH (7.4). Followed by reacidification ind extraction of the binding defects induced serum with the same solvent, separated several fractions were obtained on thin-layer chromatography. One of these fractions could reinduce the binding defects and this factor(s) is apparently weakly acidic compounds and tightly bound to serum at physiologic pH, but extractable at acidic pH, and its molecular weight range is approximately 500 or less similar to those seen in uremia. These findings strongly support the hypothesis that the drug binding defect in uremia is due to the accumulation of endogenous metabolic products which arc normally excreted by the kidneys but accumulate in renal failure.

  • PDF