• Title/Summary/Keyword: Acid-etched

Search Result 298, Processing Time 0.028 seconds

A STUDY OF THE BOND STRENGTHS OF COMPOSITE RESIN TO DENTIN SURFACES PREPARED WITH MICROABRASIVE (Microabrasive로 처리한 상아질표면에 대한 복합레진의 결합강도에 관한 연구)

  • Choi, Kyoung-Kyu;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.61-75
    • /
    • 1997
  • The bond strengths of composite resin to tooth dentin vary with the methods of cavity preparation and surface treatment. Recent developments in techniques of dentinal surface treatment have renewed interest in microabrasive as a means of tooth preparation, The purpose of this study was to determine the effects of a new method of cavity preparation on the bond of composite resin to dentin. Freshly extracted 144 healthy human third molars were used in this study. The dentin surfaces prepared with #600 SiC abrasive paper were divided into control and air abrasion groups according to the method of dentin surface preparation using different combinations of delivery pressure, time, and acid etching. The shear bond strengths were measured after the composite resin (Clearfil Photo Bright) was bonded to prepared dentin surfaces by light-curing using a dentin bonding system (All-bond 2), In addition, the average surface roughness was measured to investigate the effect of differently prepared dentin surfaces on the shear bond strengths. The surface changes of prepared dentin and the debonded dentin surfaces were observed with SEM (S-2300, Hitachi Co., Japan). The following results from this-study were obtained ; 1. There was no significant difference of shear bond strengths according to the changes of delivery pressure and time. 2. The shear bond strengths were lower than the control in the air abraded-only groups, but those of the additional acid-etched groups were higher than the control. 3. The shear bond strengths to all air-abraded surfaces were increased by acid etching. 4. The correlation between shear bond strengths and surface roughness was not certain, although the mean surface roughness of all air-abraded surfaces has increased evidently while it has slightly decreased for additional acid etching. 5. On SEM examination, the dentinal tubules were almost occluded in the air abraded-only groups, but those were opened in the additional acid-etched groups. 6. The debonded surfaces were showed adhesive failure mode in the air abraded- only groups, while those were showed mainly the mixed and cohesive failure mode in the additional acid-etched groups. These results suggest that the layer produced during cavity preparation or surface treatment with air abrasion must be removed for maximum bond strength of composite resin to dentin.

  • PDF

STUDY OF THE TENSILE BOND STRENGTH OF COMPOSITES RESINS APPLIED TO ACID-ECHED ENAMEL (산처리(酸處理)된 Enamel표면(表面)에 대(對)한 Composite resin의 인장접착강도(引張接着强度)에 관(關)한 연구(硏究))

  • Lee, Young-Kun;Min, Byung-Soon;Choi, Ho-Young;Park, Sung-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 1987
  • The purpose of this study was to evaluate the tensile bond strength between composite resin and the human enamel. Three composite resin systems, two chemical (Clearfil Posterior, and Clearfil Posterior-3) and one light cure (Photo Clearfil-A), used with and without an intermediate resin (clearfil bonding agent), were evaluated under different amounts of load (10g, 200g and 200g for a moment) for in vitro tensile bond strength to acid-eched human enamel. Clinically intact buccal or lingual surfaces of 144 freshly extracted human permanent molars, embedded in acrylic were flattened with No #600 carborundum discs. Samples were randomly assigned to the different materials and treatments using a table of random numbers. Eight samples were thus prepared for each group(Table 2) these surfaces were etched with an acid etchant (Kurarey Co. Japan) in a mode of etching for 30 seconds, washing for 15 seconds, and drying for 30-seconds. During the polymerization of composite resin on the acid-etched enamel surfaces with and without bonding agent 10-gram, 200 gram and temporary 200 gram of load were applied. The specimens were stored in 50% relation humidity at $37^{\circ}C$ for 24 hours before testing. An universal Testing machine (Intesco model No. 2010, Tokyo, Japan) was used to apply tensile loads in the vertical directed (fig 5), and the force required for separation was recorded with a cross head speed of 0.25 mm/min and 20 kg in full scale. The results were as follow: 1. The tensile bond strength was much greater in applying a bonding agent than in not doing that. 2. The tensile bond strength of chemical cure composite resin was higher than that of light cure composite resin with applying on bonding agent on the acid-etched enamel. 3. In case of not applying a bonding agents on the acid-etching enamel, the highest tensile bond strength under 200 gram of load was measured in light cure composite resin. 4. The tensile bond strength under 200-gram of load has no relation with applying the bonding agent. 5. Under the load of 10-gram, There was significant difference in tensile bond strength as applying the bonding agent.

  • PDF

Influence of surface treatment on the insertion pattern of self-drilling orthodontic mini-implants (표면처리가 교정용 미니 임플랜트의 식립수직력과 토크에 미치는 영향)

  • Kim, Sang-Cheol;Kim, Ho-Young;Lee, Sang-Jae;Kim, Cheol-Moon
    • The korean journal of orthodontics
    • /
    • v.41 no.4
    • /
    • pp.268-279
    • /
    • 2011
  • Objective: The purpose of this study was to compare self-drilling orthodontic mini-implants of different surfaces, namely, machined (untreated), etched (acid-etched), RBM (treated with resorbable blasting media) and hybrid (RBM + machined), with respect to the following criteria: physical appearance of the surface, measurement of surface roughness, and insertion pattern. Methods: Self-drilling orthodontic mini-implants (Osstem implant, Seoul, Korea) with the abovementioned surfaces were obtained. Surface roughness was measured by using a scanning electron microscope and surface-roughness-testing machine, and torque patterns and vertical loadings were measured during continuous insertion of mini-implants into artificial bone (polyurethane foam) by using a torque tester of the driving-motor type (speed, 12 rpm). Results: The mini-implants with the RBM, hybrid, and acid-etched surfaces had slightly increased maximum insertion torque at the final stage ($p$ < 0.05). Implants with the RBM surface had the highest vertical load for insertion ($p$ < 0.05). Testing for surface roughness revealed that the implants with the RBM and hybrid surfaces had higher Ra values than the others ($p$ < 0.05). Scanning electron microscopy showed that the implants with the RBM surface had the roughest surface. Conclusions: Surface-treated, self-drilling orthodontic mini-implants may be clinically acceptable, if controlled appropriately.

MORPHOLOGICAL CHANGES OF DENTIN SURFACE TREATED WITH VARIOUS DENTIN SURFACE CONDITIONERS (수종(數種) 표면처리제(表面處理劑)에 의(依)한 상아질(象牙質) 표면(表面)의 형태(形態) 변화(變化)에 관(關)한 연구(硏究))

  • Cho, Jin-Ho;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.2
    • /
    • pp.323-334
    • /
    • 1988
  • The purpose of this study was to observe the effect of dentin surface conditioners on the dentin surfaces. Freshly extracted human molars were used in this study. They were stored at $4^{\circ}C$ saline solution before experiment. The crown portions of the teeth were cut in various directions by means of wet diamond point to expose dentin which include transverse, vertical oblique, horizontal and oblique cut to the long axis (Fig. 1). Each tooth was then mounted with self curing acrylic resin in brass ring to expose the flattened dentin surfaces. Final finish was accomplished by grinding the dentin specimens with wet No. 180 and No. 600 grit silicon carbide abrasive paper until a 6.0mm in diameter on a dentin surface was exposed without pulp exposure. The specimens were divided into 9 groups according to the modes of dentin treatment procedure. The following surface treatments were applied on these preparation surfaces; Group 1: unetched (control group) after finish with No. 600 silicon carbide abrasive paper. Group 2: etched with 30% phosphoric acid for 60s Group 3: etched with 10-3 solution for 60s Group 4: Cleaned with 5% NaOCl for 30s Group 5: applied Dentin Adhesit Group 6: cleaned with 5% NaOCl followed by applying the Dentin Adhesit$^{(R)}$ Group 7: applied Photo Bond on the unetched dentin followed by applying the Photo Clearfil Bright Group 8: Etched with 30% phosphoric acid followed by applying Photo Bond and Photo Clearfil Bright Group 9: etched with 10-3 solution followed by applying Photo Bond and Photo Clearfil Bright All the specimens were stored in $37^{\circ}C$ under 50% relative humidity for 24 hours before observations. The specimens in 7, 8, and 9 group, omitting the group 1 to 6, were demineralized in 10% HCl for 10s in order to observe the resin tags. All the specimens in each group were then dried at room temperature. The dried specimens were ion coated with Eiko ion coater (Eiko-engineering Co.), and observed in Hitachi S-430 Scanning electron microscope (Hitachi, Co. Tokyo) at 15KV. The following results were obtained as follows; 1. The smear layers were still remained in group 1,2,4,5, and 6. 2. There is no effect of 5% NaOCl and 30% phosphoric acid on the changes of dentin morphology 3. The dentin treated with 10-3 solution, indicating the tubules opened when the smear layer and the dental plug dissolved. 4. In case of applying the bonding agents the resin tag was not formed at the deep area of dentinal tubules, but in case of applying the Dentin Adhesit$^{(R)}$ that was not.

  • PDF

Sulfuric Acid Treatment of Sapphire Substrates for Growth of High-Quality Epilayers

  • Park, Ji-Won;No, Young-Soo;Jung, Yeon-Sik;Yoon, Seok-Jin;Kim, Tae-Whan;Park, Won-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.493-496
    • /
    • 2004
  • The chemical etching of sapphire substrates was peformed to produce smooth surfaces on an atomic scale. The sapphire sur-face etched by using a $H_2$S $O_4$ solution showed a pit-free morphology and was yen smooth as much as $\sigma$$_{rms}$=0.13 nm, that etched by using a mixture of $H_2$S $O_4$ and $H_3$P $O_4$ contained large pits with $\sigma$$_{rms}$=0.34 nm. The $\sigma$$_{rms}$’s and the number of the pits increased with increasing etching temperature. The sapphire etched by using $H_2$S $O_4$ at 32$0^{\circ}C$ had the best surface. These results provide important information on the effects of etching treatment on the structural properties of sapphire for the growth of high-quality epilayers.ayers.

A STUDY ON THE TENSILE BOND STRENGTH OF ETCHED-METAL RESIN-BONDED RETAINERS (식각된 비귀금속합금과 법랑질을 복합레진계 시멘트로 접착시킨 경우의 접착인장강도에 관한 연구)

  • Park, Heon-Seok;Lee, Sun-Hyung;Yang, Jae-Ho;Chang, Wan-Shik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.24 no.1
    • /
    • pp.85-90
    • /
    • 1986
  • The purpose of this study was to compare the tensile bond strength of Comspan and Panavia as a luting materials between electrochemically etched Ni-Cr-Be alloy castings and acid etchea human tooth enamel. Tensile bond strength was evaluated using an Instron testing machine at a crosshead speed of 2mm/min. The following conclusions can be drawn frfm this study ; 1. The tensile bond strength of etched-metal resin-bonded specimen was $179.0{\pm}42.5kg/cm^2$ in case of Comspan and $169.6{\pm}41.4kg/cm^2$ in case of Panavia. 2. The tensile bond strength was not significantly different between Comspan, using with bonding agent, and Panavia, using without bonding agent.

  • PDF

Effects of laser-irradiated dentin on shear bond strength of composite resin (레이저 처리가 상아질과 복합 레진의 결합에 미치는 영향)

  • Kim, Sung-Sook;Park, Jong-Il;Lee, Jae-In;Kim, Gye-Sun;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.520-527
    • /
    • 2008
  • Purpose: This study was conducted to evaluate the shear bond strength of composite resin to dentin when etched with laser instead of phosphoric acid. Material and methods: Recently extracted forty molars, completely free of dental caries, were embedded into acrylic resin. After exposing dentin with diamond saw, teeth surface were polished with a series of SiC paper. The teeth were divided into four groups composed of 10 specimens each; 1) no surface treated group as a control 2) acid-etched with 35%-phosphoric acid 3) Er:YAG laser treated 4) Er,Cr:YSGG laser treated. A dentin bonding agent (Adapter Single Bond2, 3M/ESPE) was applied to the specimens and then transparent plastic tubes (3 mm of height and diameter) were placed on each dentin. The composite resin was inserted into the tubes and cured. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours and the shear bond strength was measured using a universal testing machine (Z020, Zwick, Germany). The data of tensile bond strength were statistically analyzed by one-way ANOVA and Duncan's test at ${\alpha}$= 0.05. Results: The bond strengths of Er:YAG laser-treated group was $3.98{\pm}0.88$ MPa and Er,Cr:YSGG laser-treated group showed $3.70{\pm}1.55$ MPa. There were no significant differences between two laser groups. The control group showed the lowest bond strength, $1.52{\pm}0.42$ MPa and the highest shear bond strength was presented in acid-etched group, $7.10{\pm}1.86$ MPa (P < .05). Conclusion: Laser-etched group exhibited significantly higer bond strength than that of control group, while still weaker than that of the phosphoric acid-etched group.

Electrochemical Properties of Metal Aluminum and Its Application (금속알루미늄의 전기화학적 성질과 응용)

  • Tak, Yongsug;Kang, Jinwook;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.335-342
    • /
    • 2006
  • Metal aluminum, of which has a low standard reduction potential, participates in the electrochemical oxidation reaction and results in the structural change and accompanying property variation of aluminum and its oxide film. Aluminum was electrochemically etched in acid solution and the surface area was magnified by the formation of high density etch pits. Etched aluminum was covered with a compact and dense dielectric oxide film by anodization and applied to the capacitor electrode. Anodization of aluminum in acid solution at low temperature makes a nanoporous aluminum oxide layer which can be used for the fabrication template of nanostructural materials. Electrochemical characteristics of aluminum turn the metal aluminum into functional materials and it will bring the diverse applications of metal aluminum.

Stacked High Voltage Al Electrolytic Capacitors Using Zr-Al-O Composite Oxide

  • Zhang, Kaiqiang;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.757-763
    • /
    • 2019
  • A stacked high-voltage (900 V) Al electrolytic capacitor made with ZrO2 coated anode foils, which has not been studied so far, is realized and the effects of Zr-Al-O composite layer on the electric properties are discussed. Etched Al foils coated with ZrO2 sol are anodized in 2-methyl-1,3-propanediol (MPD)-boric acid electrolyte. The anodized Al foils are assembled with stacked structure to prepare the capacitor. The capacitance and dissipation factor of the capacitor with ZrO2 coated anode foils increase by 41 % and decrease by 50 %, respectively, in comparison with those of Al anode foils. Zr-Al-O composite dielectric layer is formed between separate crystalline ZrO2 with high dielectric constant and amorphous Al2O3 with high ionic resistivity. This work suggests that the formation of a composite layer by coating valve metal oxide on etched Al foil surface and anodizing it in MPD-boric acid electrolyte is a promising approach for high voltage and volume efficiency of capacitors.