• Title/Summary/Keyword: Acid treatment

Search Result 8,537, Processing Time 0.034 seconds

Glutaric Aciduria Type I: Overview

  • Kim, Su Jin
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.5 no.1
    • /
    • pp.8-11
    • /
    • 2021
  • Glutaric aciduria type 1 (GA1; OMIM #231670) is a rare autosomal recessive-inherited neurometabolic disorder caused by the deficiency of glutaryl-CoA dehydrogenase (GCDH), which is encoded by the GCDH gene. It results in the accumulation of glutaric acid (GA), 3-hydroxyglutaric acid (3-OH-GA), glutaconic acid, and glutarylcarnitine (C5DC). These metabolites are considered to damage the striatum through an excitotoxic mechanism. The treatments of GA1 known to date are metabolic maintenance treatment based on a low-lysine diet and emergency treatment during acute illness. However, treatment after the onset of neurological symptoms has limited effectiveness and is associated with poor outcomes, and the effect of treatment and disease course after treatment are not good. After the implementation of newborn screening, the incidence of acute encephalopathic crisis fell to 10%-20% with early diagnosis, preventative dietary management, and aggressive medical intervention during acute episodes. Recently, several cohort studies have been published on the natural course and treatment of GA1 patients. This mini review will cover the clinical symptoms, natural history, and treatment of GA1 through a literature review.

The Effects of Metal Compounds on the Phospholipid Metabolism in Bacillus subtilis;

  • Ma, Hye-Young;Jung, Kyung-Suk;Jang, Jae-Seon;Lee, Chong-Sam
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.1-11
    • /
    • 1997
  • The synthesis of phospholipid and the composition of fatty acid in B. subtills treated with copper chloride (10 ppm), manganese chloride (100 ppm), and nickel chloride (50 ppm) during the culture were analyzed to compare with the control. The levels of growth, total lipid, phosphatidylethanolamine(PE), phosphatidylcholine(PC), phosphatidylglycerol(PG), and cardiolipin(CL) in B. subtilis treated with copper chloride were decreased predominantly. But, the biosynthesis of phosphatidylinositol(PI) was not affected by the metal compounds. The major fatty acids utilized for the formation of phospholipid were palmitic acid(average 19.00%) and stearic acid(average 9.88%) in the control. In the copper chloride treatment, however, palmitic acid (average 17.35%) and oleic acid(average 15.99%) made use of the major fatty acid during the biosynthesis of phospholipids. It was showed that oleic acid(average 17.87%) and stearic acid (average 13.78%) in thee manganese chloride treatment, and palmitic acid(average 15.00%) and myristic acid(average 14.24%) in the nickel chloride treatment were utilized.

  • PDF

In vivo Methane Production from Formic and Acetic Acids in the Gastrointestinal Tract of White Roman Geese

  • Chen, Yieng-How;Wang, Shu-Yin;Hsu, Jenn-Chung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.1043-1047
    • /
    • 2009
  • Three experiments were conducted to determine the conversion rate of formic and acetic acids into methane in the gastrointestinal tracts of geese. In experiment I, two sets of two 4-month-old male White Roman geese were allocated to one of two treatment groups. Each set of geese was inoculated either with formic acid or with phosphate buffer solution (PBS). After the acid or the PBS was inoculated into the esophagi of the geese, two birds from each treatment were placed in a respiratory chamber as a measurement unit for 4 h in order to determine methane production rate. In experiment II and III, 6- and 7-wk-old male White Roman goslings were used, respectively. Birds were allocated to receive either formic acid or PBS solution injected into the ceca in experiment II. Acetic acid or PBS solution injected into the cecum were used for experiment III. After either the acids or the PBS solution were injected into the cecum, two birds from each treatment were placed in a respiratory chamber as a measurement unit for 3 h; each treatment was repeated 3 times. The results indicated that formic acid inoculated into the oesophagi of geese was quickly converted into methane. Compared with the PBS-injected group, methane production increased by 5.02 times in the formic acid injected group (4.32 vs. 0.86 mg/kg BW/d; p<0.05). Acetic acid injected into the ceca did not increase methane production; conversely, it tended to decrease methane production. The present study suggests that formic acid may be converted to methane in the ceca, and that acetic acid may not be a precursor of methane in the ceca of geese.

Fermentation of Environmental Friend Total Mixed Ration and Alteration of Rumen Fermentation Characteristics (환경친화적 섬유질 배합사료의 발효와 반추위 발효특성 변화)

  • Ryu, Chae-Hwa;Park, Myung-Sun;Park, Chul;Choi, Nag-Jin;Cho, Sang-Buem
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.461-473
    • /
    • 2017
  • Total mixed ration (TMR) including concentrate diet and roughage together have been used for the ruminant animal. Relatively high concentrations of moisture and water soluble carbohydrate are representative feature of TMR. Those moisture and water can also provide a niche for bacterial growth. Therefore, a possible fermentation of TMR induced by micro-organism is generally accepted. The present study hypothesized that different lactic acid bacteria could alter fermentation of TMR and subsequently rumen fermentation. Three lactic acid bacteria, Lactobacillus paracasei (A), L. plantarum (B) and L. parabuchneri (C), were employed and 7 treatments under full factorial design were compared with control without inoculation. TMR for dairy cow was used. Significant alterations by treatments were detected at lactic acid and butyric acid contents in TMR (p<0.05). Treatment AC (mixture of A and C) and BC (mixture of B and C) showed great lactate production. Great butyrate production was found at treatment C. At in vitro rumen fermentation, treatments B, C and AB (mixture of A and B) showed significantly great total gas production (p<0.05). All treatments except treatments B and AB, showed less dry matter digestibility, significantly (p<0.05). Total volatile fatty acid production at treatment AC was significantly greater than others (p<0.05). In individual volatile fatty acid production, treatment AB and AC showed great acetate and propionate productions, significantly (p<0.05). This study investigated correlation between organic acid production in TMR and rumen volatile fatty acid production. And it was found that butyric acid in TMR had significant negative correlation with acetate, propionate, total volatile fatty acid, AP ratio and dry matter digestibility.

Non-thermal treatment of Prunus mume fruit and quality characteristics of the dehydrated product (청매실의 비가열 전처리 및 건조매실의 특성)

  • Kang, Ji-Hoon;Kim, Nam-Ho;Song, Kyung Bin
    • Food Science and Preservation
    • /
    • v.21 no.5
    • /
    • pp.652-660
    • /
    • 2014
  • To maintain the microbiological safety of Prunus mume fruit before it is processed, it was treated with a combination of 0.5% citric acid and 0.1% Tween 20, and stored at $4{\pm}1^{\circ}C$ for seven days. The combined treatment reduced total aerobic bacteria, yeast, and mold populations in the fruit by 2.20 and 1.70 log CFU/g, respectively, compared to those in the control. Organic acid contents and the Hunter $L^*$, $a^*$, and $b^*$ values were not affected by the treatment during the storage. In addition, the dried Prunus mume fruit prepared with 40% red algae extract (RAE) or maltodextrin (MD) treatment and hot-air drying were compared with respect to the fruit's physicochemical properties such as color, total phenolic and flavonoid content, and microstructure. The hot-air dried samples had undesirable color changes and inferior textures. The RAE-treated samples had a higher total phenolic content (225.15 mg gallic acid equivalent (GAE)/100 g) and total flavonoid content (49.25 mg quercetin equivalent (QE)/100 g) than the other treatments. The treatment of Prunus mume fruit with RAE can provide better-dried products than can MD treatment or hot-air drying. These results suggest that the combined treatment with citric acid and Tween 20 can be effective in preserving the microbiological safety of Prunus mume fruit, and its dehydration using RAE is an efficient drying method.

Evaluation of Cold Tolerance in Rice Cultivars by the Characteristics Related to Chilling Injury I. Fatty Acid Composition of Phospholipid and Chilling Injury of Seedlings (수도(水稻) 품종(品種)의 냉해관련인자(冷害關聯因子) 특성(特性)에 의(依)한 내냉성(耐冷性) 평가(評價) I. 묘(苗)에 인지질(燐脂質)의 지방산(脂肪酸) 조성(組成)과 내냉성(耐冷性))

  • Seok, Soon-Jong;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 1991
  • Composition and unsaturation ratio of fatty acids composing phospholipid which is the main constituent of biological membranes are known to be related to the response of plant to cold stress. In order to investigate a relationship between fatty acid unsaturation ratio of phospholipid and the range of cold tolerance of rice cultivars obtained in the field experiment, the lipid from the leaves of 32 rice cultivars were isolated and the fatty acid composition of phospholipid was determined by gas chromatography. In this experiment, composition and unsaturation ratio of fatty acids composing phopholipid on rice plants grown under natural condition and treated with chilling temperature were compared with the cold tolerance in the field for rice cultivars. The results obtained were summarized as follows ; 1. The phospholipids isolated from the leaves of 32 rice cultivars both grown under natural condition and chilling treatment contained palmitic, linoleic and linolenic acid as major components and palmitoleic, stearic and oleic acid as minor components. 2. The content of palmitic acid, a saturated fatty acid, was reduced in rice seedlings subjected to chilling treatment for 3 days at $15^{\circ}C$, and contents of linoleic and linolenic acid, unsaturated fatty acids, were increased. 3. The unsaturation ratio of fatty acid was increased by chilling treatment, and was high in cold-tolerant cultivars but low in cold-susceptible cultivars and the results were correlated with the range of cold tolerance investigated in the field. 4. The content of palmitic acids among fatty acids composing phospholipid was reduced and that of linolenic acid was increased by hardening treatment. 5. The unsaturation ratio of fatty acid was increased 18~24% by hardening treatment compared to control.

  • PDF

Inhibition of Browning in Yam Fresh-cut and Control of Yam-putrefactive Bacterium Using Acetic Acid or Maleic Acid. (초산 및 말레산을 이용한 생마 신선편이 갈변억제 및 생마 저온부패균의 제어)

  • Ryu, Hee-Young;Kwun, In-Sook;Park, Sang-Jo;Lee, Bong-Ho;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.135-141
    • /
    • 2007
  • To increase the consumer acceptability of yam and the shelf-life of fresh-cut yam, organic acid-treated fresh-cut yam was prepared. When uncontaminated fresh-cut yam was stored at $4^{\circ}C$ for 14 days after treatment with 1% (v/w) organic acids, the browning and microbial putrefaction of fresh-cut yam were inhibited by treatment of acetic acid or maleic acid, whereas treatment of citric acid and ascorbic acid, commonly used browning inhibitors in food industry, did not show apparent effects on the browning and putrefaction of yam. The Inhibitory effects of acetic acid or maleic acid were superior than those of NaOCl (100 ppm), hydrogen peroxide (100 ppm) or commercially available washing solution. Also, treatments of 1% acetic acid, or 1% maleic acid Into artificially-contaminated yam $(10^5\;CFU/g-yam)$ showed strong inhibition of browning and putrefaction during long term storage at $4^{\circ}C$. The growth inhibition test indicated that 0.1% is enough to inhibit the growth of psychrotrophic yam-putrefactive Pseudomonas sp., and treatment of 0.1% acetic acid, or 0.1% maleic acid inhibited the browning and microbial putrefaction of fresh-cut yam. Our results suggested long-term distribution of yam or other root crops products is possible by treatment of organic acid, such as acetic acid, combined with aseptic vacuum packaging technology.

Treatment of PDA in Premature Newborns with Mefenamic Acid (Mefenamic acid를 이용한 미숙아 동맥관 개존증 치험)

  • Lee, Jae-Joon;Lee, Young-Hwan;Shin, Son-Moon
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.2
    • /
    • pp.506-511
    • /
    • 1993
  • This study was conducted to examine the effect of mefenamic acid for treatment of PDA in premature newborns. Ductus arteriosus is reopened by locally produced prostaglandin $E_2$ in a premature newborn during hypoxia. Mefenamic acid is one of non-steroidal antiinflammatory drugs acting by inhibition of cyclo-oxygenase in the prostaglandin synthesis pathway. For three premature newborns with PDA, we administered mefenamic acid and evaluated them with echocardiography to study the effect of mefenmic acid for closure of PDA. In all three babies, ductus arteriosus was closed successfully. We feel that mefenamic acid is safe and effective medication for treatment of PDA in premature newborns, but further study need to be conducted with larger numbers of cases to confirm this effect.

  • PDF

Effects of Dietary Activated Carbon on Physico-Chemical Characteristics and Fatty Acid Composition of Pork (활성탄의 첨가급여가 돈육의 이화학적 특성과 지방산 조성에 미치는 효과)

  • 문성실;신철우;강근호;주선태;박구부
    • Food Science of Animal Resources
    • /
    • v.22 no.2
    • /
    • pp.145-150
    • /
    • 2002
  • Effects of dietary 0.6% activated carbon on pork quality were investigated with six pigs (Landrace ${\times}$ Large White ${\times}$ Duroc) that were randomly selected from uterine brothers. Three pigs, for control group, were fed with a commercial pig diet for 4 weeks before slaughter whereas the others were fed a diet added 0.6 % activated carbon for treatment group. Pork loin and belly cuts were collected at 24 hrs postmortem, and transfered to laboratory to measure quality characteristics. There were no significant differences in muscle pH and cooking loss % of pork loin and belly. Also there were no significant differences in adhesiveness, cohesiveness, gummness and brittleness between thed treatment and control. However, hardness and springiness of samples from the treatment were significantly higher (p<0.05) than those of control. There were no significant differences in scores of aroma, color and off-flavor assessed by a penal test. Treatment group showed a significantly higher acceptability (p<0.05) compared to the control group. Samples of the treatment had higher concentrations of oleic acid, linoleic acid and linolenic acid, wheres samples of control showed a higher concentration of palmitic acid (p<0.05). Belly cuts of control group showed a significantly higher concentration of stearic acid compared to the treatment group. These results suggested that hardness, springiness and acceptability of pork could be improved, and concentration of unsaturated fat acid in pork muscle might be increased by dietary 0.6 % activated carbon.

Effects of Different Additives on Fermentation Characteristics and Protein Degradation of Green Tea Grounds Silage

  • Wang, R.R.;Wang, H.L.;Liu, X.;Xu, C.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.616-622
    • /
    • 2011
  • This study evaluated the fermentation characteristics and protein degradation dynamics of wet green tea grounds (WGTG) silage. The WGTG was ensiled with distilled water (control), or lactic acid bacteria (LAB), enzyme (E), formic acid (FA) and formaldehyde (FD) prior to ensiling. Three bag silos for each treatment were randomly opened at 0, 3, 7, 14, 28 and 60 days after anaerobic storage. For all the treatments, except for FA, there was a rapid decline in pH during the first 7 days of ensiling. LAB treatment had higher lactic acid content, lower ammonia-N ($NH_3$-N) and free-amino nitrogen (FAA-N) contents than other treatments (p<0.05). E treatment had higher lactic acid, water-soluble carbohydrates (WSC) and non-protein nitrogen (NPN) content than the control (p<0.05). FA treatment had higher $NH_3$-N and FAA-N content than the control (p<0.05). FD treatment had lower NPN and FAA-N content than the control, but it did not significantly inhibit the protein degradation when compared to LAB treatment (p>0.05). Results indicate that LAB treatment had the best effect on the fermentation characteristics and protein degradation of WGTG silage.