• Title/Summary/Keyword: Acid sulfate soil

Search Result 142, Processing Time 0.043 seconds

Distribution Patterns of Native Sulfate Displaced by Respective Pore Volumes of Oxalic Acid in Cecil Bt Soil

  • Koo, Bon-Jun;Chung, Doug-Y.;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.291-296
    • /
    • 2002
  • In this investigation we tried to investigate the effect of oxalic acid on the fate of native sulfate in Bt soil that contained a high kaolinitic clay by observing the distribution of two anions using soil column under the given competitive adsorption between displaced and displacing anions. To do this, the soil columns uniformly packed to a bulk density of 1.25 $g/cm^3$ with Cecil Bt soil were disected and analyzed the amounts of sulfate and oxalic acid both in solution and solid phases after flowing the designated pore volumes of oxalic acid The results showed that two sets of curves-nonlinear (> $10^3M$) and linear (> $10^3M$) curves where the solution of oxalic acid was not adiustet while the approaches to the plateau were slow when pH of oxalic acid was adjusted to 5. The cumulative amount of sulfate desorbed by successive addition of oxalic acid was nonlinearly approached to the plateau at the concentration of $10^3M$ or greater, indicating that the number of addition of oxalic acid increased with decreasing order of oxalic acid. However, the plateau did not obtain where the concentration of oxalic acid were less than $10^4M$, showing a linear increase. Therefore, we may conclude that the rate-limited desorption was involved as the concentration of oxalic acid decreased.

Steel Pile Corrosion in Potential Acid Sulfate Soil (잠재성 특이산성토중 강관말뚝의 부식)

  • Lee, Seung-Heon;Park, Mi-Hyeun;Yoon, Kyung-Sup
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.559-562
    • /
    • 2003
  • The results and discussions of surveyed case site at constructed steel pile in potential acid sulfate soil were as follows. Topography at surveyed site was local alluvial valley and that site soils was classified as BanGog and YuGye series as detailed soil surveyed results in RDA and soil texture was Clay/Clay Loam. Soils pH was neutral, which was average 7.5 but much decreased to average 4.2 after $H_2O_2$ treatment. Organic matter and sulfate ions contents were very rich. The corrosion was severe at ground water fluctuation depth. Deposits colored black were attached to steel pile surface, which because of violent reaction in treatment HCI solution, were guessed as corrosion products (FeS) reduced by sulfate reducing bacteria(SRB). Consequently, main cause was thought microbiologically induced corrosion at this site where there is ground water fluctuation occurring oxidation and reduction reactions in turn and the soil is potential acid sulfate soil.

  • PDF

Microbial Amelioration of Acid Mine Drainage Impaired Soil using the Bacterial Consortia of Klebsiella sp. and Raoultella sp.

  • Park, Seon Yeong;Lee, Gi Won;Kim, Chang Gyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.34-44
    • /
    • 2021
  • Acid mine drainage (AMD) resulting from pyrite oxidation in mining areas, subsequently leads to soil acidification accompanied by lowering pH and high concentration of metals and metalloids in its surrounding environment. Regarding to this, the microbial amelioration has been considered as a promising option for a more cost-effective and eco-friendlier countermeasure, compared to the use of alkaline chemicals. This study was aimed to evaluate influencing factors in microbially-mediated amelioration of acidic soil spiked by simulated AMD. For this, microcosm experiments were conducted by acid-neutralizing bacterial consortium (dominated by Klebsiella sp. and Raoultella sp.) under the various conditions of AMD spikes (0-2,500 mg SO42-/L), together with acidic mine soil (0-100 g) or sphagnum peat (0-5 g) in the 200 mL of nutrient medium. The employed bacterial consortium, capable of resisting to high level of sulfate concentration (up to 1,500 mg SO42-/L) in low pH, generated the ammonium while concomitantly reduced the sulfate, subsequently contributing to the effective soil stabilization with an evolution of soil pH up to neutral. Furthermore, it demonstrates that suitable condition has to be tuned for successful microbial metabolism to facilitate with neutralization during practical application.

Chemistry of Strong Acidic Soil on Ulsan-Jungjadong Cut-Slope Affecting Seed Germination (종자발아에 영향을 미치는 울산 정자동 절토비탈면 강산성 토양의 화학적 특성)

  • Jang, Chang-Hee;Kim, Min-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.133-142
    • /
    • 2006
  • Occasionlly, a lot of plants withered on the marine upheaval soil, because of the potential acid sulfate soil. It was necessary to investigate the chemistry of soil, before planting on Ulsan-Jungjadong cut-slope of road construction site. Cut-slope surface soils were sampled on the every varying points in soil colour and analyzed chemically. Germination status of seeds in sample soils was investigated such as Albizzia julibrissin, Festuca arundinacea. Relationship between germination status and chemistry of soil was analyzed. The results of investigation and analysis are as follows. 1. Germination of seeds was inhibited, less than pH($H_2O$ 1 : 5) 2.63. 2. Germination of seeds was inhibited, more than EC($H_2O_2$ 1 : 5) 13.4mS. 3. Germination of seeds was inhibited, more than aluminum ion content 2.0ppm in soil solution extracted by A$H_2O$ and 6.2ppm by $H_2O_2$. 4. pH($H_2O$ 1 : 5), EC($H_2O_2$ 1 : 5) and aluminum ion content proved chemical indicators of seed germination inhibition, in case of potential acid sulfate soil.

Characteristics and Improvement of Potential Acid Sulfate Soil Derived from Continental Materials on Alluvial Fan (선상지(扇床地) 육성(陸成) 잠재특이산성토(潛在特異酸性土)의 특성과 개량)

  • Jung, Yeun-Tae;Yun, Eul-Soo;Son, Il-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.195-201
    • /
    • 1992
  • A Potential acid sulfate soil derived from continental Holocene deposits on the fan-base was found and it was characterized with improvement practices. Artesian wells were scattered in the area, and the imperfectly drained soils were featured by having fine loamy with 7~30% of gravels. The potential acid sulfate soil layers were typified by having darkness in color with around 3.3~3.8% of O.M. and 0.34~0.41% of total sulfur. Soil pH ranged from 3.4 to 3.8 but it was decreased to 1.9~2.5 after oxidation with $H_2O_2$. Ground water sprang out from an artesian well contained a high amount of minerals such as Na, Ca, Mg, K, etc. and about 80ppm of sulfate which seemed to be responsible for pyrite formation. The soil was classified to member of "Fine loamy, mixed, acid, mesic, sulfic Haplaquepts" in taxonomically, and "weak potential acid sulfate soils" in interpretatively. The installation of tile drains with adding fine earth and liming were effective. However, the pH goes down to 4.8 again after 3 years of improvement practices.

  • PDF

Volcanic Origin Potential Acid Sulfate Soil Material : Hydrothermally Altered Pyrite Rich Andesite (열수변질 함황철석 안산암 기원의 잠재성 특이산성토 물질)

  • Kim, Jae Gon;Chon, Chul-Min;Yun, Eul-Soo;Zhang, Yong-Seon;Jung, Pil-Kyun;Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.311-317
    • /
    • 2000
  • Acid sulfate soil and potential acid sulfate soil material are worldwide in distribution and are problematic in agriculture and environment due to their present and potential acidity developed by the oxidation of sulfides. Most of them are sedimentary origin and a few cases are reported as volcanic or metamorphic origin. We report a potential acid sulfate soil material originated from volcanic activity during Mesozoic. A profile of Bongsan series-weathered nonpyritic andesite-hydrothermally altered pyrite rich andesite was studied with field examination, chemistry, and mineralogy. Once, the pyrite rich andesite was exposed to atmosphere by excavation and leveling works for a residential area and the lay out site had subsequent acidification problem of soil and surface water. The parent material and soil profile of Bongsan series had no signs of presence of pyrite and acid sulfate weathering such as yellow mottles. However, the hydrothermally altered andesite substrata contained significant amount of pyrite showing characteristics of hydrothermal origin such as cubic and pyritohedron morphology and occurrence along cracks.

  • PDF

The Potential Acid Sulfate Soils Criteria by the Relation between Total-Sulfur and Net Acid Generation (전황함량과 순산발생능력의 상관관계를 통한 잠재특이산성토양 기준 설정)

  • Moon, Yonghee;Zhang, Yong-Seon;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Park, Chan-Won;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.904-909
    • /
    • 2012
  • Acid sulfate soil (ASS) and potential acid sulfate soil (PASS) are distribution in worldwide and originate from sedimentary process, volcanic activity, or metamorphism and are problematic in agriculture and environmental due to their present and potential acidity developed by the oxidation. The PASS was defined as soil materials that had sulfidic layer more than 20 cm thick within 4 m of the soil profile and contained more than 0.15% of total-sulfur (T-S). A tentative interpretative soil classification system was proposed weak potential acid sulfate (T-S, 0.15-0.5%), moderate potential acid sulfate (T-S, 0.5-0.75%) and strong potential acid sulfate (T-S, more than 0.75%). PASS due to excess of pyrite over soil neutralizing capacity are formed. It provides no information on the kinetic rates of acid generation or neutralization; therefore, the test procedures used in acid base account (ABA) are referred to as static procedures. The net acid generation (NAG) test is a direct method to measure the ability of the sample to produce acid through sulfide oxidation and also provides and indication. The NAG test can evaluated easily whether the soils is PASS. The samples are mixed sandy loam and the PAS from the hydrothermal altered andesite (1:3, 1:8, 1:16, 1:20, 1:40, 1:80 and 1:200 ratios) in this study. We could find out that the NAG pH of the soil containing 0.75% of T-S was 2.5, and that of the soil has 0.15% of T-S was 3.8. NAG pH test can be proposed as soil classification criteria for the potential acid sulfate soils. The strong type has NAG pH of 2.5, the moderate one has NAG pH of 3.0, and the weak one has NAG pH of 3.5.

Estimation on Unsaturated Characteristic Curves of Acid Sulfate Soils (ASS) (산성토의 불포화 특성곡선 산정)

  • Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.25-34
    • /
    • 2018
  • The physical properties and unsaturated characteristics of acid sulfate soils were investigated and analyzed. As the results of measuring physical properties of the acid sulfate soils obtained around the Ilkwang mine area, the dry unit weight is $1.246t/m^3$ and this soil is classified into the silty sand (SM) by USCS. Soil Water Characteristics Curves (SWCC) of the drying and wetting paths were measured by the automated SWCC apparatus. Also, Hydraulic Conductivity Functions (HCF) of the drying and wetting paths were estimated by the van Geunchten (1980) model which is the most well-known parameter estimation method. The hydraulic conductivity of acid sulfate soils in the dry path was continuously decreased with increasing the matric suction. However, the hydraulic conductivity in the wetting path was decreased relatively small with increasing matric suction and decreased suddenly just before water entry value of matric suction. Meanwhile, the hysteresis phenomenon was occurred in SWCCs and HCFs during the drying and wetting paths.

Comparison of community structure of sulfate reducing bacteria in rice paddy and dry farming soils (논과 밭 토양의 황산염 환원세균 군집 구조 비교)

  • Lee, Jung Bae;Park, Kyeong Ryang
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • The goal of this study was to identify relationships between the composition of sulfate reducing bacterial assemblages and terminal restriction fragment length polymorphism (T-RFLP) patterns in rice paddy and dry farming soils. Samples of organic farming soils, conventional farming soils, and dry field farming soils were collected in August and November. Analyses of the soil chemical composition revealed similar total nitrogen, total carbon and total inorganic phosphorus levels; however, the moisture content and total carbon were higher than in the other soils in both August and November, respectively. Sulfate reducing bacteria utilizing lactic acid were more widely distributed than those that used acetic acid, and the number of sulfate reducing bacteria in organic farming soil was most abundant. Phylogenetic analysis based on 181 clones revealed that most showed low similarity with cultured sulfate reducing bacteria, but more than 90% similarity with an uncultured sulfate reducing bacteria isolated from the environment. T-RFLP analysis revealed that fragments of 91, 357, 395, and 474 bp were most common, and the community structure of sulfate reducing bacteria changed seasonally.

Study on the Oxidation Process of Potential Acid Sulfate Soil (잠재 산성황산염토양의 산화과정에 대한 연구)

  • Han, Kang-Wan;Chun, Jae-Chul;Cho, Jae-Young;Kim, Geum-Hee;Ann, Yeoul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.243-248
    • /
    • 1996
  • To find out the oxidation process of potential acid sulfate soil(PASS) along with time. the PASS were treated with lime and ammonia water to adjust soil pH in laboratory column condition. pH range of PASS showed 6.5 to 7.5. however, complete oxidized PASS by $H_2O_2$ showed 2.1 to 2.5. After pilling the PASS under the natural condition. oxidation occured slowly from surface of the pilled soil. The oxidation of PASS proceeded slowly when the soil was in submerged condition. but quickly in dried condition. The content of sulfide-sulfur in PASS sharply decreased after exposing to the air and the decreasing rate was greater in dried than in submerged condition. The content of sulfate-sulfur continuously decreased in submerged condition. but increased in dried condition. Contents of $Fe^{+{+}}$ and $Al^{+{+}}$ in PASS were generally increased with time and the increasing rate was greater in submerged than in dried condition. Liming to PASS was slowly acting to pH change and ammonia water caused fast pH change within a short period of time. The contents of sulfate-sulfur and exchangeable aluminum in drainage water decreased with time and the contents of sulfide-sulfur and ferrous iron were increased.

  • PDF