Browse > Article
http://dx.doi.org/10.7845/kjm.2015.5006

Comparison of community structure of sulfate reducing bacteria in rice paddy and dry farming soils  

Lee, Jung Bae (Department of Biological Science and Biotechnology, Hannam University)
Park, Kyeong Ryang (Department of Biological Science and Biotechnology, Hannam University)
Publication Information
Korean Journal of Microbiology / v.51, no.1, 2015 , pp. 21-30 More about this Journal
Abstract
The goal of this study was to identify relationships between the composition of sulfate reducing bacterial assemblages and terminal restriction fragment length polymorphism (T-RFLP) patterns in rice paddy and dry farming soils. Samples of organic farming soils, conventional farming soils, and dry field farming soils were collected in August and November. Analyses of the soil chemical composition revealed similar total nitrogen, total carbon and total inorganic phosphorus levels; however, the moisture content and total carbon were higher than in the other soils in both August and November, respectively. Sulfate reducing bacteria utilizing lactic acid were more widely distributed than those that used acetic acid, and the number of sulfate reducing bacteria in organic farming soil was most abundant. Phylogenetic analysis based on 181 clones revealed that most showed low similarity with cultured sulfate reducing bacteria, but more than 90% similarity with an uncultured sulfate reducing bacteria isolated from the environment. T-RFLP analysis revealed that fragments of 91, 357, 395, and 474 bp were most common, and the community structure of sulfate reducing bacteria changed seasonally.
Keywords
dry farming soil; phylogenetic tree; rice paddy soil; sulfate reducing bacteria; T-RFLP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pester, M., Knorr, K.H., Friedrich, M.W., Wagner, M., and Loy, A. 2012. Sulfate-reducing microorganisms in wetlands-fameless actors in carbon cycling and climate change. Front. Microbiol. 28, 3-72.
2 Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. 4, 406-425.
3 Saxena, A.G. 2013. Sulfur-cycling in methane-rich ecosystems: uncovering microbial processes and novel niches. Environ. Microbiol. 14, 3271-3286.
4 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739.   DOI
5 Touzel, J.P. and Albagnac, G. 1983. Isolation and characterization of Methanococcus mazei strain MC3. FEMS Microbiol. Lett. 16, 241-245.   DOI
6 Wagner, M., Roger, A.J., Flax, J.L., Brusseau, G.A., and Stahl, D.A. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975-2982.
7 Westermann, P. 1993. Wetland and swamp microbiology. In Ford, T.E. (ed.) Aquatic microbiology, pp. 215-238. Blackwell Sci. Publ., Cambridge, MA.
8 Wind, T. and Conrad, R. 1997. Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochem. 37, 253-278.   DOI
9 Wu, X.J., Pan, J.L., Liu, X.L., Tan, J., Li, D.T., and Yang, H. 2009. Sulfate-reducing bacteria in leachate-polluted aquifers along the shore of the East China Sea. Can. J. Microbiol. 55, 818-828.   DOI
10 Balch, W.E., Fox, G.E. Magrum, L.J., Woese, C.R., and Wolfe, R.S. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43, 260-296.
11 Barton, L.L. and Tomei, F.A. 1995. Characteristics and activities of sulfate-reducing bacteria, pp. 1-32. Peplum Press, New York, USA.
12 Benjamin, K.H., Zhang, H., Berelson, W., and Victoria, J. 2009. Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments. Appl. Environ. Microbiol. 75, 1487-1499.   DOI
13 Burns, A.S., Pugh, C.W., Segid, Y.T., Behum, P.T., Lefticariu, L., and Bender, K.S. 2012. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Biodegradation 3, 415-429.
14 Carmen, E.M., Yanez, C., Yoon, O.J., and Bruns, M.A. 2007. Biogeochemistry of metalliferous peats: sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores. Environ. Sci. Technol. 41, 5323-5329.   DOI
15 Detmers, J., Bruchert, V., Habicht, K.S., and Kuever, J. 2001. Diversity of sulfur isotope fractionations by sulfate reducing prokaryotes. Appl. Environ. Microbiol. 67, 888-894.   DOI
16 Castro, H.F. 2003. Microbial ecology of anaerobic terminal carbon mineralization in Everglades soils, with emphasis on sulfate reducing prokaryotic assemblages, pp. 27-37. Ph. D. Thesis. University of Florida.
17 Castro, H.F., Reddy, K.R., and Ogram, A. 2002. Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl. Environ. Microbiol. 68, 6129-6137.   DOI
18 Chauhan, A., Ogram, A., and Reddy, K.R. 2004. Syntrophic-methanogenic associations along a nutrient gradient in the Florida Everglades. Appl. Environ. Microbiol. 70, 3475-3484.   DOI
19 Doris, S., Wentrup, C., Braunegger, C., Deevong, P., Hofer, M., Andreas, R., Christian, B., Michael, P., Michael, W., and Alexander, L. 2011. Microorganisms with novel dissimilatory sulfite reductase genes are widespread and part of the core microbiota in low-sulfate Peatlands. Appl. Environ. Microbiol. 77, 1231-1242.   DOI
20 Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791.   DOI
21 Gavin, N.R., Baldwin, D.S., Watson, G.O., and Hall, K.C. 2010. Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt. Sci. Total Environ. 409, 134-139.   DOI
22 Hansel, C.M., Fendorf, S., Jardine, P.M., and Francis, C.A. 2008. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl. Environ. Microbiol. 74, 1620-1633.   DOI
23 Lee, D.B., Lee, K.B., Kim, M.Y., Kim, B.H., Choi, M.K., and Park, S.T. 1998. Influence of spa sewage on the water quality and soil chemical properties in the near stream. Kor. Turfgrass Sci. 7, 135-147.
24 He, J.Z., Liu, X.Z., Zheng, Y., Shen, J.P., and Zhang, L.M. 2010. Dynamics of sulfate reduction and sulfate-reducing prokaryotes in anaerobic paddy soil amended with rice straw. Biol. Fertil Soils 46, 283-291.   DOI
25 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.   DOI
26 Kovacik, W.P., Scholten, J.C., Culley, D., Hickey, R., Zhang, W., and Brockman, F.J. 2010. Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to shortterm changes in substrate feed. Microbiology 156, 2418-2427.   DOI
27 Leloup, J., Quillet, L., Berthe, T., and Petit, F. 2006. Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol. Ecol. 55, 230-238.   DOI
28 Lijing, J., Zheng, Y., Peng, X., Zhou, H., Zhang, C., Xiao, X., and Wang, F. 2009. Vertical distributionand diversity of sulfatereducing prokaryotes in the Pearl River estuarine sediments, Southern China. FEMS Microbiol. Ecol. 70, 249-262.   DOI
29 Park, M.A. and Chang, N.K. 1994. Mineral nutrient and productivity of three grasslands in Kimhwa. Kor. Turfgrass Sci. 8, 29-36.
30 Pester, M., Bittner, N., Deevong, P., Wagner, M., and Loy, A. 2010. A 'rare biosphere' microorganism contributes to sulfate reduction in a peatland. ISME J. 4, 1751-7362.