• 제목/요약/키워드: Acid regeneration system

검색결과 67건 처리시간 0.027초

Callus induction and high-efficiency plant regeneration via somatic embryogenesis in Papaver nudicaule L., an ornamental medicinal plant

  • Yang, Jing Li;Zhao, Bo;Seong, Eun-Soo;Kim, Myong-Jo;Kang, Won-Hee;Kim, Na-Young;Yu, Chang-Yeon;Li, Cheng Hao
    • Plant Biotechnology Reports
    • /
    • 제4권4호
    • /
    • pp.261-267
    • /
    • 2010
  • We describe culture conditions for a high-efficiency in vitro regeneration system of Papaver nudicaule through somatic embryogenesis and secondary somatic embryogenesis. The embryogenic callus induction rate was highest when petiole explants were cultured on Murashige and Skoog (MS) medium containing 1.0 mg $1^{-1}$ ${\alpha}$-naphthaleneacetic acid (NAA) and 0.1 mg $1^{-1}$ 6-benzyladenine (BA) (36.7%). When transferred to plant growth regulator (PGR)-free medium, 430 somatic embryos formed asynchronously from 90 mg of embryogenic callus in each 100-ml flask. Early-stage somatic embryos were transferred to MS medium containing 1.0 mg $1^{-1}$ BA and 1.0 mg $1^{-1}$ NAA to germinate at high frequency (97.6%). One-third-strength MS medium with 1.0% sucrose and 1.0 mg $1^{-1}$ $GA_3$ had the highest frequency of plantlet conversion from somatic embryos (91.2%). Over 90% of regenerated plantlets were successfully acclimated in the greenhouse. Secondary somatic embryos were frequently induced directly when the excised hypocotyls of the primary somatic embryos were cultured on MS medium without PGRs. Sucrose concentration significantly affected the induction of secondary embryos. The highest induction rate (89.5) and number of secondary somatic embryos per explant (9.3) were obtained by 1% sucrose. Most secondary embryos (87.2-94.3%) developed into the cotyledonary stage on induction medium. All cotyledonary secondary embryos were converted into plantlets both in liquid and on semisolid 1/3-strength MS medium with 1.0% sucrose.

재조합 대장균과 효모의 고정화 혼합세포계에 의한 ${\gamma}$-Glutamylcysteine 생산 (Production of ${\gamma}$-Glutamylcysteine by Immobilized Mixed Microbial System of Recombinant E. coli and Yeast)

  • 김원근;구윤모
    • KSBB Journal
    • /
    • 제10권3호
    • /
    • pp.249-256
    • /
    • 1995
  • ${\gamma}$-Glutamylcysteine 생산에 있어서 재조합 대장 균 HB101/pGH501만을 이용한 단일세포반응계가 재조합 대장균과 효모를 이용한 흔합서l포반응계보다 반응시간이 짧고 생산농도가 높은 것으로 나타났다. 그러나 생산경제성 측면에서 ATP 재생공정을 위하 여 훈합세포반응계를 사용하였다. 재조합 대장균과 효모를 이용한 혼합세포반응계에서 대장균과 효모의 비율은 1:4가 적합함을 보였고, ATP 재생공정에 사용되는 glucose는 O.5M의 농도에서 가장 효율적 으로 나타났다. 재조합 대장균과 효모를 alginate를 이용하여 고정화하여 반응계로 사용하였을 경우 반 응에 필요한 시간이 걸어지고 생산놓도도 감소되냐 반응계의 안정성은 10% 정도 증가됨을 알 수 있었다. 실험결과 alginate로 고정화된 흔합세포반응계 를 사용하여 ${\gamma}$-glutamylcysteine를 연속 생산할 수 있음을 확인하였다.

  • PDF

RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli

  • Lee, Kyounghee;Park, Ok-Sun;Seo, Pil Joon
    • Molecules and Cells
    • /
    • 제39권6호
    • /
    • pp.484-494
    • /
    • 2016
  • Plant cells have a remarkable ability to induce pluripotent cell masses and regenerate whole plant organs under the appropriate culture conditions. Although the in vitro regeneration system is widely applied to manipulate agronomic traits, an understanding of the molecular mechanisms underlying callus formation is starting to emerge. Here, we performed genome-wide transcriptome profiling of wild-type leaves and leaf explant-derived calli for comparison and identified 10,405 differentially expressed genes (> two-fold change). In addition to the well-defined signaling pathways involved in callus formation, we uncovered additional biological processes that may contribute to robust cellular dedifferentiation. Particular emphasis is placed on molecular components involved in leaf development, circadian clock, stress and hormone signaling, carbohydrate metabolism, and chromatin organization. Genetic and pharmacological analyses further supported that homeostasis of clock activity and stress signaling is crucial for proper callus induction. In addition, gibberellic acid (GA) and brassinosteroid (BR) signaling also participates in intricate cellular reprogramming. Collectively, our findings indicate that multiple signaling pathways are intertwined to allow reversible transition of cellular differentiation and dedifferentiation.

국내 옥수수 품종 및 계통의 미숙배 배양으로부터 Yellowish Friable Embryogenic 캘러스 (YFEC) 생산과 식물체 재생 (Yellowish Friable Embryogenic Callus (YFEC) Production and Plant Regeneration from Immature Embryo Cultures of Domestic Maize Cultivars and Genotypes (Zea may L.))

  • 조미애;박윤옥;김진석;박기진;민황기;유장렬;최필선
    • Journal of Plant Biotechnology
    • /
    • 제32권2호
    • /
    • pp.117-121
    • /
    • 2005
  • 국내 옥수수 3품종 (두메찰, 미백찰, 흑점찰)과 5 계통(HW1, KL103, HW3, HW4, KW7)의 미숙배를 1 mg/L 2,4-D, 25 mM proline, 100 mg/L casamino acid, 3 mM MES, 1.7 mg/L $AgNO_3$, Eriksson's vitamin 및 20 g/L sucrose가 첨가된 MS배지 (SEM)에 5주 동안 배양하였다. 각 계통 및 품종의 체세포배 발생 빈도는 HW1 (45.20%), KL103 (5.75%), HW3 (37.20%), HW4 (30.10%), KW70 (55.20%), 미백찰 (18.74%), 흑점찰 (22.41%), 두메찰 (36.72%)이었으며, 모델 품종인 Hi II type에서는 10% 이하였다. Hi II계통에서 형성되는 type II캘러스와 같은 노란색의 부드러운 배발생캘러스 (yellowish friable embryogenic callus, YFEC)는 오직 HW3와 흑점찰 품종에서 형성되었으며, 반면 다른 품종 및 계통에서는 late-embryo단계의 단단한 체세포배가 직접 발생되거나 형태적으로 비정상 모양을 갖는 단단하고 팽창된 체세포배가 발생 되었다. 노란색의 부드러운 배발생캘러스 (yellowish friable embryogenic callus, YFEC)는 동일배지에서 빠르게 증식 되었고 6개월 이상 배발생 능이 유지 되었으며, 1차 재분화 배지와 2차 재분화배지에 옮겼을 때 모두 식물체로 전환 되었다. 그러나 단단한 노란색의 배발생캘러스와 비정상 형태의 체세포배는 동일배지에서 매우 느리게 증식되었고, 재분화 배지에서 낮은 식물체 전환율 (25%)을 보였다. 따라서 본 연구로부터 선발된 HW3와 흑점찰은 향후 국내 옥수수 유전자원을 이용한 형질전환 시스템 개발연구에 이용 될 수 있을 것으로 예상된다.

NgR1 Expressed in P19 Embryonal Carcinoma Cells Differentiated by Retinoic Acid Can Activate STAT3

  • Lee, Su In;Yun, Jieun;Baek, Ji-Young;Jeong, Yun-Ji;Kim, Jin-Ah;Kang, Jong Soon;Park, Sun Hong;Kim, Sang Kyum;Park, Song-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.105-109
    • /
    • 2015
  • NgR1, a Nogo receptor, is involved in inhibition of neurite outgrowth and axonal regeneration and regulation of synaptic plasticity. P19 embryonal carcinoma cells were induced to differentiate into neuron-like cells using all trans-retinoic acid and the presence and/or function of cellular molecules, such as NgR1, NMDA receptors and STAT3, were examined. Neuronally differentiated P19 cells expressed the mRNA and protein of NgR1, which could stimulate the phosphorylation of STAT3 when activated by Nogo-P4 peptide, an active segment of Nogo-66. During the whole period of differentiation, mRNAs of all of the NMDA receptor subtypes tested (NR1, NR2A-2D) were consistently expressed, which meant that neuronally differentiated P19 cells maintained some characteristics of neurons, especially central nervous system neurons. Our results suggests that neuronally differentiated P19 cells expressing NgR1 may be an efficient and convenient in vitro model for studying the molecular mechanism of cellular events that involve NgR1 and its binding partners, and for screening compounds that activate or inhibit NgR1.

An Efficient Plant Regeneration and Transformation System of Robinia pseudoacacia var. umbraculifera for Phytoremediation

  • Kwon, Hye-Jin;Woo, Seong-Min;Seul, Eun-Jun;Kim, Teh-Ryung;Shin, Dong-Un;Kim, Hag-Hyun
    • Journal of Plant Biotechnology
    • /
    • 제34권4호
    • /
    • pp.293-298
    • /
    • 2007
  • Robinia pseudoacacia var. umbraculifera, commonly called umbrella black locust were regenerated after co-cultivation of internode segments with Agrobacterium tumefaciens which included yeast cadmium factor 1 (YCF 1) gene. The tolerance to cadmium and lead for plants can be increased by the YCF1 gene expression. Moreover, the recent studies have shown that YCF1 gene transgenic plants increase the accumulation of cadmium and lead into plant vacuoles. The effect of plant growth regulator such as 2,4-dichlorophenoxyacetic acid (2,4-D), ${\alpha}$-naphthaleneacetic acid (NAA), 6-benzyladenine (BA), and thidiazuron (TDZ) were studied to evaluate the propagation of plants through internode explants. The efficient induction of multiple adventitious shoots and callus were observed on a medium supplemented with 0.1 mg/L TDZ + 0.2 mg/L BA. To induce shoot elongation and rooting, regenerated shoots were transferred into basal MS medium without any plant growth regulator. Successful Agrobacterium tumefaciens mediated transformation was obtained by 20 min vacuum-infiltration with $50{\mu}M$ acetosyringone on the optimal multiple shoot induction medium with 30 mg/L hygromycin and 300 mg/L cefotaxime. To confirm the integration and expression of transgene, Polymerase Chain Reaction (PCR) and Reverse Transcriptase PCR (RT-PCR) were performed with specific primers. The frequency of transformation was approximately 18.94%. This study can be used to genetic engineering of phytoremediator.

식물생장조절제 처리가 들잔디의 Callus유기 및 Multiple Shoots형성에 미치는 영향 (The Effects of Plant Growth Substances on the Callus Induction and Multiple Shoot Formation of Korean Lawngrass( Zoysia japonica Steud.))

  • 심재성;김동찬;서병기
    • 아시안잔디학회지
    • /
    • 제8권3호
    • /
    • pp.137-147
    • /
    • 1994
  • We have established a high-frequency plant regeneration system via organogenesis from mature seed of Korean lawngrass(Zoysia japonica Steud.). The effects of 2,4-dichiorophenoxy acetic acid (2,4-D), 6-furfuryl amino purine (kinetin), $\alpha$-naphthaiene acetic acid (NAA), N6-benzyl amino pu-rine (BAP), and casein hydrolysate (CR) on cailus induction and multiple shoot formation on ex-posure to light were evaluated. Callus produced on the Murashige and Skoog (MS) medium containing 2,4-D and kinetin had high organogenesis potency. A single addition of 1.0 mg $L-^1$ 2,4-D significantly induced callus. Also, 1.0 mg L-$^1$ 2,4-D, with the addition of 0.1 mg $L-^1$ kinetin highly enlianced callus induction. The trend of cailus induction was also found on mediurn containing 0.1 mg $L-^1$ BAP with 1.0 mg $L-^1$2,4-D, and 1 g $L-^1$ CR with the addition of 1.0 mg $L-^1$ 2,4-D. However, NAA was no effective on callus formation. The growth of root was significantly high in the presence of 0.1 mg $L-^1$ kinetin compared to other concentrations. Over 2 mg $L-^1$ kinetin highly lengthened roots. Fresh weight of plantlet was highest on medium containing 0.1 mg $L-^1$ 2,4-D. Also, on medium containing 0.1 mg $L-^1$ BAP, fresh weight of piantlet was highly enhanced. BAP was significantly effective on multiple shoot formation, particularly when 2.0 mg $L-^1$ was added with 0.1 mg $L-^1$ 2,4-D. Callus induction and multiple shoot formation were achieved on MS basal medium containing 1.0 g $L-^1$ CH.

  • PDF

담배 속 식물의 다양한 활용방안 모색 (Usage of Tobacco Plants for Various Purposes)

  • 엄유리;이문순;이이;석영선
    • 한국연초학회지
    • /
    • 제33권1호
    • /
    • pp.8-15
    • /
    • 2011
  • Genus Nicotiana has 76 species including N. tabacum. These plants are used not only as a material for cigarette manufacturing but also as ornamental plant, medicinal plant, poisonous substance plant, and bug repellent plant. N. tabacum is used as a main material for cigarette manufacturing with N. rustica. N. sylvestris and N. alata is used as ornamental plants because of their beautiful flowers and N. rustica is used for bug repellent or pesticide because of its high concentration of nicotine. N. glauca, a tree tobacco, is used for bio-fuel production. N. tabacum is used as a popular model plant system for degeneration, regeneration, and transformation. N. benthamiana is also used as a model system for foreign gene expression by agroinfiltration. The transformation ability of tobacco plant is a good target for molecular farming. Hepatitis B virus envelop protein, E. coli heat-labile enterotoxin, diabetes autoantigen, and cholera toxin B subunit were produced using tobacco plants. Secondary metabolites of tobacco include nicotine, anabasine, nornicotine, anatabine, cembranoid, solanesol, linoleic acid, rutin, lignin and sistosterol, and they are used for various medicine productions which cannot be produced by organic synthesis for their complicated structures. In conclusion, we have to understand the applicability of tobacco plant in detail and study to enlarge the usage of the plants.

비용매 휘발법을 이용한 생체모사 혈액친화성 폴리락티드-카프로락톤 공중합체 필름의 제조 (Blood-compatible Bio-inspired Surface of Poly(L-lactide-co-ε-caprolactone) Films Prepared Using Poor Co-solvent Casting)

  • 임진익;김수현
    • 폴리머
    • /
    • 제39권1호
    • /
    • pp.40-45
    • /
    • 2015
  • 혈항혈전성 표면의 제조를 위해 간단한 비용매 휘발 방법을 통하여 고탄성체이면서 생분해성 폴리 락티드-카프로락톤 공중합체 필름의 표면상에 연잎 구조물과 유사한 마이크로 돌기를 만들어 주었다. 표면 구조와 소수성도, 항혈전 효과 등을 시험했으며, 결정화도와 탄성회복률 등의 물리적 특성도 분석하였다. 그 결과 비용매와 메틸렌클로라이드의 혼합 부피비 1:2에서 연잎표면과 유사한 최적의 효과를 얻었으며, 이때 수접촉각은 $124^{\circ}$였다. 혈소판 부착시험에서는 처리하지 않는 군에 비해 약 10%만 부착되는 효과를 확인할 수 있었다.

Comparison of forage yields and growth of sorghum, proso millet and japenase millet according to cropping system with italian ryegrass

  • Kim, Jihye;Cho, Jin-Woong
    • 농업과학연구
    • /
    • 제45권1호
    • /
    • pp.43-49
    • /
    • 2018
  • The species of forage crops used in this study were Italian ryegrass (cv. Kowenery), sorghum (cv. SX17), proso millet (cv. domestic) and Japanese millet (cv. Jeju). The plant height of the summer crops was the highest at the dough stage. The dry matter yield of Italian ryegrass was 902.7 kg per 10 a. The dry matter yield of the winter crop and sorghum was 11,985 kg when harvested at the dough stage rather than at the first and second harvests. The proso and Japanese millet also had higher yields for dry matter during the dough stage rather than during heading and regeneration. The acid detergent fiber (ADF) content of Sorghum was lower than that of the first and second harvest; however, the proso and Japanese millet had a higher ADF content at the dough stage. The neutral detergent fiber (NDF) content was higher at the dough stage than at the first and second harvest, and the crude protein content was also lower at the dough stage than at the first and second harvest. The crude protein production for the dry matter yield was about 84 kg in Sorghum when harvested at the dough stage. Proso millet showed no difference for the crude protein production at the heading and dough stage while the Japanese millet had a higher crude protein production. There were no differences in the total digestible nutrients (TDN) content for the three crops according to the harvesting time. Therefore, if Sorghum and Proso and Japanese millet are to be combined with Italian ryegrass, it is better to harvest them at the dough stage.