• Title/Summary/Keyword: Acid regeneration system

Search Result 67, Processing Time 0.026 seconds

Treatment of Hydrochloric acid from Regeneration and Scrubber system of Cold Rolling Mill Plant with Micro-bubble (마이크로버블을 이용한 냉연 산회수설비공정 발생 염화수소 가스 처리)

  • Jung, Yong-Jun;Jung, Jae-Ouk;Kim, Ye-Jin
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.118-123
    • /
    • 2015
  • This work has performed to examine the operation status of regeneration and scrubber system of cold rolling mill plant and established the DIWS(Dip Injection Wet Scrubber) system for the removal of hydrochloric acid with micro bubble. When the initial 22.3 ppm of HCl gas was injected into the system, the average exhaust HCl gas was 0.59 ppm with the removal efficiency of 97.3%. Hydrochloric acid was effectively removed by DIWS system. In the long term monitoring for 10 hours by 5 minutes through TMS(Tele Monitoring System), the average exhaust HCl gas was stably kept 0.69 ppm, which was also verified by manual measurement.

Efficient and Reliable in vitro Regeneration System for Rubus Species as the Basis of Genetic Engineering

  • Kalai Katalin;Meszaros Annamaria;Denes Ferenc;Zatyko Jozsef;Balazs Ervin
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.241-246
    • /
    • 2005
  • Factors affecting regeneration of different Rubus varieties (blackberry, raspberry and their hybrid) were examined and a reliable regeneration system was established. Media for stock plant maintenance were tested; different explants and media were investigated to find the best circumstances for the regeneration. The effect of the commonly used antibiotics was studied to determine the most suitable one for selection of the transformants. We found that both MS and LS media supplemented by $20\;gL^{-1}$ sucrose are suitable for the stock plant maintenance. The optimal hormone content for the stock plants is $0.125\;mgL^{-1}$ 6-benzylaminopurine (BAP) with $0.01\;mgL^{-1}$ indole-3- butyric acid (IBA). The highest regeneration rate was observed on medium containing MS salts with B5 vitamins complemented with glucose, sucrose, maltose, $10\;gL^{-1}$ each, supplemented with benzylaminopurine riboside (BAR) ($2\;mgL^{-1}$) and indole-3-acetic acid (IAA) ($0.1\;mgL^{-1}$). The regenerated shoots appeared directly from the cut edges, without callus phase. Hygromycin and geneticin proved to be good selection agents for the Rubus explants, but due to their severe effect on the tissues we propose to use marker-free constructions for the transformation.

In vitro regeneration from cotyledon explants in figleaf gourd (Cucurbita ficifolia Bouch$\'{e}$), a rootstock for Cucurbitaceae

  • Kim, Kyung-Min;Kim, Chang-Kil;Han, Jeung-Sul
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • An efficient plant regeneration system has been developed for figleaf gourd (Cucurbita ficifolia Bouch$\'{e}$), which is exclusively used as a rootstock for cucumber. The protocol is based on results obtained from a series of culture experiments involving different parts of the cotyledons and various media. The culture of cotyledon explants was critical for the enhancement of shoot regeneration frequency. The lower parts of the cotyledon excised at the plumule base were found to display a markedly enhanced production of adventitious shoots compared to other cotyledon regions. Culture in silver nitrate-supplemented Murashige and Skoog (MS) medium was not beneficial for shoot regeneration and suppressed root regeneration. Efficient shoot regeneration was obtained on MS medium containing 1.0 $mg\;l^{-1}$ zeatin and 0.1 $mg\;l^{-1}$ indole-3-acetic acid. Regenerated shoots successfully elongated and rooted in medium containing 0.1 $mg\;l^{-1}$ 1-naphthalene-acetic acid after 10-15 days of subculturing. The plantlets were satisfactorily acclimatized in a greenhouse and grew into normal plants without any morphological alterations.

Establishment of proliferation and regeneration system of PLBs in Phalaenopsis by treatments of a variety of types of medium, sucrose concentrations and anti-browning agents (다양한 배지종류, sucrose 농도 및 갈변억제물질 처리에 의한 팔레놉시스 PLB 증식 및 재분화 체계확립)

  • Roh, Hee Sun;Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.223-228
    • /
    • 2014
  • To establish an efficient proliferation and regeneration of PLBs (protocorm-like bodies) of Phalaenopsis plants, a variety of propagation medium types, various concentraions of sucrose as well as liquid and solid type were tested in this study. Further, activated charcoal, citric acid and ascorbic acid were compared whether these agents are suppose to reduce the browning in culture process using PLBs of Phalanopsis plants. With regard to the proper propagation medium, VW medium showed 1.3 ~ 2 times highr than those of other medium in an index of increasing for fresh weight and 50% higher than those of other medium in the frequency of shoot regeneration. However, regarding liquid and solid types of culture, there were no significant differences in the proliferation of PLBs and regeneration of shoots from PLBs. In the experiment for a variety of sucrose concentrations (0 ~ 50 g/l), 10 g of sucrose showed 30 ~ 50% higher than other concentrations in increasing index and 10 ~ 50% higher in the regeneration of shoots from PLBs. Regarding the reduction of browning in tissue culture via PLBs of Phalaenopsis plants, 1 g of activated charcoal showed only 1.5% browning of PLBs cultured. Whereas, other treatments including citric acid and ascorbic acid showed 6 ~ 16% of browning of PLBs. Therefore, activated charcoal was selected as an efficient anti-browning agents for the culture of PLBs in Phalaenopsis plants. Using above-described results can be contibuted to the establishment of mass propagation system using PLBs of Phalaenopsis plants in the future.

Treatment of Hydrochloric Acid Gas from the Acid Regeneration System of Iron and Steel Industry with Micro-bubble System (마이크로버블 장치를 이용한 철강산업의 산회수설비 발생 염화수소 가스 처리)

  • Jae-Ouk Jung;Kwang-Heon Lee;Yong-Jun Jung
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.291-296
    • /
    • 2023
  • DIWS system was employed to treat hydrochloric acid gas from cold rolling mill process of iron and steel industry. Chlorine gas generated from the acid regeneration system was combined with hydrogen gas and hydrogen chloride gas was increased to 50%. After the injection of Na2S2O3 to remove chlorine gas, the removal of hydrogen chloride was stably kept 87.5~88.8%, where the inflow was 13.1~13.4ppm and the outflow was 1.5~1.7ppm. DIWS system can be recommended for the real iron and steel plant because it was stably maintained not only the air emission standards but also the reduction of chemical usage.

Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast

  • Jeon, Hyunwoo;Durairaj, Pradeepraj;Lee, Dowoo;Ahsan, Md Murshidul;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2076-2086
    • /
    • 2016
  • Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at $30^{\circ}C$. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

Establishment of Cell Suspension Cultures and Plant Regeneration in White Dandelion (Taraxacum coreanum NAKAI.)

  • Sun, Yan-Lin;Kim, Jae-Hak;Hong, Soon-Kwan
    • Korean Journal of Plant Resources
    • /
    • v.24 no.3
    • /
    • pp.280-285
    • /
    • 2011
  • In this study, we established a novel somatic embryogenesis and plant regeneration system through cell suspension culture of white dandelion (Taraxacum coreanum NAKAI.). Embryogenic calli could be initiated from leaf and root explants of sterile seedlings on solid Murashige and Skoog (MS) medium supplemented with 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) after 3-week cultures. To proliferate embryogenic calli rapidly, cell suspension culture was performed with transferred to liquid MS medium with various combinations of plant growth regulators (PGRs) including 2,4-D, ${\alpha}$-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA), $N^6$-benzylamino purine (BAP), thidiazuron (TDZ), and kinetin. During suspension cultures, embryogenic calli not only greatly proliferated, but shoot organogenesis also simultaneously occurred from the surface of somatic embryos. Among them, TDZ at lower concentration, 0.1 mg/L produced the highest efficiency of somatic embryo formation and shoot organogenesis. Rooting of embryogenic calli with adventitious shoots was done on solid MS medium containing 0.1 mg/L NAA and 0.3% activated carbon. Nearly 80% of embryogenic calli with shoot organogenesis could be rooted normal. Well-rooted plantlets were transferred into pots under a greenhouse condition, and plants derived from this system appeared phenotypically normal.

In vitro Regeneration of Phragmites australis through Embryogenic Cultures

  • Lee Jeong-Sun;Kim Chang-Kyun;Kim In-Sung;Lee Eun-Ju;Choi Hong-Keun
    • Journal of Plant Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • Phragmites australis (reed) has received much attention as being one of the principle emergent aquatic plants for treating industrial and civil wastewater. Plant regeneration via plant tissue culture in p. australis was investigated. Three types of callus were identified from seeds on N6 medium plus 4.5 UM 2,4-dichlorophenoxyacetic acid (2,4-D). Yellow compact type showed the best redifferentiation, whereas white compact type and yellow friable were not competent to differentiate into plane. Solid medium culture was better than liquid suspension culture for enhancing callus growth when N6 medium supplemented with 4.5 ${\mu}M$ 2,4-D was used. Phytagel, as a gelling agent, was superior to agar in plant regeneration on N6 medium, supplemented with 9.4 ${\mu}M$ kinetin and 0.54 ${\mu}M$ $\alpha$-naphthaleneacetic acid (NAA). Transfer of the plantlets regenerated from kinetin and NAA-supplemented N6 medium to growth regulator-free MS medium enhanced the further development of the plantlets. Plantlets on subsequently grown to maturity when tansferred to potting soil. The regenerated plants exhibited morphologically normal. The system for plant regeneration of P. australis enables to propagate elite lines on a large scale for water purification in the ecosystem

Establishment of a novel plant regeneration system from suspension-derived callus in the halophytic Leymus chinensis (Trin.)

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.228-235
    • /
    • 2010
  • The establishment of cell suspension culture and plant regeneration of the halophytic Leymus chinensis (Trin.) are described in this study for the first time. Callus induction solid medium containing Murashige and Shoog (MS) basic salt, $2.0\;mg\;l^{-1}$ 2,4-dichlorophenoxyacetic acid (2,4-D), and $5.0\;mg\;l^{-1}$ L-glutamic acid with $30.0\;g\;l^{-1}$ sucrose and $4.0\;g\;l^{-1}$ gelrite for solidification induced the highest rate of cell division in Type 1 callus among calli of various types. Liquid medium with the same hormone distribution was therefore, used for cell suspension culture from Type 1 callus. Over a 30 d suspension culture at 100 rpm, great amounts of biomass were accumulated, with 71.07% average daily increment and 22.32-fold total fresh weight increment. Comparison of before and after suspension culture, the distribution of different size callus pieces and the maintenance of callus type were basically unaltered, but a slight increase in relative water contents was observed. To induce the potential of plant regeneration, the directly transferring on plant regeneration solid medium containing MS basic salt, $0.2\;mg\;l^{-1}$ $\alpha$-naphthalene acetic acid (NAA), $2.0\;mg\;l^{-1}$ kinetin (Kn), and $2.0\;g\;l^{-1}$ casamino acid and indirectly transferring were simultaneously performed. Even now growth rates of suspension-derived callus on solid medium were approximately half of those of Type 1 callus, but faster somatic embryogenesis was observed. Rooting of all regenerated shoots was successfully performed on half-strength MS medium. All plants appeared phenotypically normal.

High-frequency Plant Regeneration from Cultured Flower Bud Receptacles of Allium hookeri L.

  • Koo, Ja Choon
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.694-701
    • /
    • 2014
  • Allium hookeri L. (Alliaceae family) is an important ethnomedicinal plant native to the Himalayan region of Asia. The aim of this research was to establish a high-frequency plant regeneration system for in vitro propagation of A. hookeri. Among the tissue types examined, receptacle explants derived from immature flower buds showed the highest regeneration rate of shoots ($93.33{\pm}4.63%$), roots ($76.67{\pm}7.85%$), and calli ($80.00{\pm}7.43%$) when cultured on Gamborg B5 (B5) medium containing $10{\mu}M$ 6-benzylaminopurine (BA) + $1{\mu}M$ naphthalene acetic acid (NAA), $0.5{\mu}M$ BA + $5{\mu}M$ NAA, and $1{\mu}M$ BA + $10{\mu}M$ NAA, respectively. Shoot multiplication was superior when cultured in liquid rather than on solid medium and relatively high concentrations of BA, ranging from 5 to $10{\mu}M$. Efficient bulblet formation following root induction from shoot clumps was achieved with culture in liquid B5 medium containing 7% (w/v) sucrose. Regenerated bulblets were successfully acclimatized to ex vitro conditions with a greater than 95% survival rate. By this method, a maximum of 62 plantlets per receptacle could be propagated within 9 weeks of initial culture. The in vitro propagation system established in this study will promote A. hookeri biotechnology, including large-scale production of healthy and aseptic clones, preserving parental genotypes with desirable traits, and genetic manipulation to enhance medicinal value.