• Title/Summary/Keyword: Acid regeneration

Search Result 447, Processing Time 0.021 seconds

The Effects of various Regeneration techniques on Bone Regeneration around Dental Implant (수종의 재생 술식 시행이 매식체 근원심부의 골재생에 미치는 영향)

  • Lee, Myung-Ja;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.383-399
    • /
    • 2005
  • The successful implantation necessitate tissue regeneration m site of future implant placement, there being severe bone defect. Therapeutic approaches to tissue regeneration in the site have used bone grafts, root surface treatments, barrier membranes, and growth factors, the same way being applied to periodontal tissue regeneration. Great interest in periodontal tissue regeneration has lead to research in bone graft, guided-tissue regeneration, and the administration of growth factors as possible means of regenerating lost periodontal tissue. The blood component separated by centrifuging the blood is the platelet-rich plasma. There are growth factors, PDGF, $TGF{beta}1$, $TGF{beta}2$ and IGF in the platelet-rich plasma. The purpose of this study was to study the histopathological correlation between the use of platelet-rich plasma and the healing of bone defect around implant fixture site. Implant fixtures were inserted and graft materials were placed into the left femur of in the experimental group, while the control group received only implant fixtures. In the first experimental group, platelet-rich plasma and BBP xenograft were placed at the implant fixture site, and the second experimental group had platelet-rich plasma, BBP xenograft, and the e-PTFE membrane placed at the fixture site. The degree of bone regeneration adjacent to the implant fixture was observed and compared histopathologically at 2, 4, and 8 weeks after implant fixture insertion. The results of the experiment were as follows: 1. Bone remodeling in acid etched surface near the implant fixture of all experimental groups was found to be greater than new bone formation. 2. Bone remodeling in acid etched surface distant to the implant fixture of all experimental groups was decreased and new bone formation was not changed. 3. Significant new bone formation in machined surface near the implant fixture of bothl experimental groups was observed in 2 weeks. 4. New bone formation in machined surface distant to the implant fixture of both experimental groups was observed. Bone remodeling was significant in near the implant fixture and not in distant to the implant fixture. The results of the experiment suggested that the change of bone formation around implant. Remodeling in machined surface distant to the implant fixture of both experimental groups, and new bone formation and remodeling near the implant fixture were significant.

The Effect of EDTA, Tetracycline-HCl, and Citric Acid on Diseased Root Surfaces; The SEM Study (EDTA, 염산 테트라싸이클린, 구연산 처치가 치근면에 미치는 영향)

  • Ahn, Seong-Hee;Chai, Jung-Kiu;Kim, Chong-Kwan;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.561-578
    • /
    • 1999
  • The goal of periodontal therapy is the periodontal regeneration by the removal of microorganisms and their toxic products from the periodontally diseased root surface. To achieve periodontal regeneration, root conditioning as an adjunct to root planing has been done. There are low pH etchants such as citric acid, tetracycline-HCl, and EDTA solution which is a neutral chelating agent. The purpose of present study was to examine the effect of root conditioning by citric acid, tetracycline HCl, and EDTA. Total 35 root specimens(6${\times}$3${\times}$2mm) were prepared from the periodontally diseased teeth, scaled and root planed. The specimens were treated with normal saline for 1 minute, saturated citric acid(pH 1) for 3 minutes, 50mg/ml tetracycline-HCl(pH 2) for 5 minutes, 15% EDTA(pH 7) for 5 minutes using rubbing technique. The specimens were examined under scanning electron microscopy at 1000, and 3000 magnification. On the microphotographs taken at 1000 magnification, the numbers of opened and patent dentinal tubules per unit area(10,640${\mu}m^2$) were counted. And the diameters of opened dentinal tubules per unit are (10,640${\mu}m^2$) were measured. The differences of number and diameter among all groups were statistically analyzed by Kruskal Wallis Test. The results were as follows; 1. In the specimens applied with normal saline(control group), the root surface was finely cracked, and was covered by irregular smear layer. Neither exposed dentinal tubules nor any patent dentinal tubules could be seen. 2. In the specimens applied with saturated citric acid(experimental 1 group), the globular collagen fibers were exposed around the peritubular space, and many dentinal tubules were revealed. 3. In the specimens applied with tetracycline-HCl(experimental 2 group), the process-like collagen fibers were exposed around the peritubular space, and some dentinal tubules were revealed. 4. In the specimens applied with 15% EDTA(experimental 3 group), the root surface was covered by the collagenous fibrillar network, and many dentinal tubules were revealed. 5. The numbers of opened and patent dentinal tubules were significantly more in exp. 1 group and exp. 3 group than in exp. 2 group(P<0.05). But there was no significant difference between exp. 1 group and exp. 3 group. In control group, the number of opened and patent dentinal tubules could not be counted because any dentinal tubules couldn't be seen. 6 . The diameter of opened dentinal tubules was significantly smaller in exp. 1 group and exp. 3 group than in exp. 2 group(P<0.05). But there was no significant difference between exp. 1 group and exp. 3 group. In control group, the diameter of opened dentinal tubules could not be measured because any dentinal tubules couldn't be seen. The results demonstrate that root conditioning with citric acid, tetracycline- HCl, and EDTA is more effective in periodontal healing than only root planing, and 15% EDTA solution can replace low pH etching agents such as citric acid, tetracycline-HCl for root conditioning.

  • PDF

Protoplast Formation and Regeneration of Thermophilic Clostridium thermocellum and Clostridium thermohydrosulfuricum (고온성 Clostridium thermocellum과 Clostridium thermohydrosulfuricum의 원형질체 형성 및 재생)

  • 김욱한;정기택;이용현
    • Korean Journal of Microbiology
    • /
    • v.28 no.4
    • /
    • pp.304-310
    • /
    • 1990
  • The conditions for protoplasts formation and regeneration of thermophilic anaerobic C. thermocellum and C. thermohydrosulfuricum were determined under the anaerobic growth conditions. The cells of C. thermocellum in initial exponential growth phase were identified to be the most suited for protoplast formation. The optimal conditions for protoplast formation were found to be at $37^{\circ}C$ for 2 hours with 0.5 mg/ml of lysozyme in TMG buffer (pH7.5). On the other hand, C. thermohydro-sulfuricum grown in the same medium but excluding glycine was optimally protoplasted at the same conditions but with 0.2 mg/ml of lysozyme. The protoplasts of both strains only subjected to lysozyme treatment of the short time were satisfactorily regenerated after 7-10 days incubation at $60^{\circ}C$ in regeneration medium containing 0.3-0.4 M sorbitol, 0.5% casamino acid, and high concentration of $CaCl_{2}$ and $MgCl_{2}$. The regeneration frequencies of the protoplasts of C. thermocellum and C. thermohydrosulfuricum were found to be very low level of $4.85{\times}10^{-3}$ and $4.23{\times}10^{-2}$, respectively. The nonregenerated L-form cells were also observed inregeneration medium together with regenerated cells.

  • PDF

Effect of Citric Acid and Tetracycline HCl Root Conditioning on rhBMP-2 on Human Periodontal Ligament Fibroblast and Osteoblast cell (구연산과 테트라싸이클린으로 처리한 치근면에서 rhBMP-2가 치주인대섬유아세포와 골아세포의 활성에 미치는 영향)

  • Shim, Jung-Min;Han, Soo-Boo;Seol, Yang-Jo;Lee, Yong-Moo;Kim, Kyeong-Hwa;Kye, Seung-Beom;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.21-41
    • /
    • 2001
  • The goal of Periodontal treatment is predictable periodontal regeneration. But until now, many products including GTR materials and growth factors are beyond of complete regeneration. BMP can induce ectopic bone formation when implanted into sites such as rat muscle and can greatly enhance healing of bony defects when applied exogenously. BMP can promote periodontal regeneration by their ability to stimulate new bone and new cementum formation. But little is known about optimal conditions required for the application. Root conditioning is used for bioacive root change so altered root surface provides a substrate that promotes chemotaxis, migration and attachment of peridontal cells encouraging connective attachment to the denuded root surface. The aim of this study is to investigate whether the acid conditioning change effect of rhBMP-2 on human periodontal ligament cell and osteoblast cell line. 288 periodontally involved root dentin slices are divided into 6 groups, each 48, 1)control, 2)treated with BMP, 3)treated with citric acid 4)treated with citric acid+BMP 5)treated with tetracycline 6)treated with TC+BMP. Each group was devided half, so 12 root dentin slices were seeded with periodontal ligament cells and 12 were seeded with osteoblasts. At day 2 and 7, cell number, protein assay, ALP activitiy was measured. To investigate morphology of cultured cells, SEM was employed. Statistical analysis was performed with SPSS 8.0 either t-test or ANOVA test. The results are ; Protein assay and cell number was slightly decreased in CA+BMP group compared to Ca group but it was not statistically significant and ALP activity was much more increased in CA+BMP group compared to CA group so there was no statistically significance between BMP and CA+BMP group and statistically significant compared to control group. Cell number and protein assay was slightly increased in TC group and ALP activity was much less the BMP group and CA group. Cell number and protein and ALP activity was not much increased in TC+BMP group. TC group and TC+BMP group showed cell morphology change in SEM. This results suggested that application of root surface with citric acid before BMP treatment might give better result in periodontal regeneration.

  • PDF

Efficient Plant Regeneration Using Mature Seed-Derived Callus in Zoysiagrass (Zoysia japonica Steud.) (성숙종자 유래 캘러스를 이용한 들잔디 (Zoysia japonica Steud.)의 효과적인 식물체 재분화)

  • ;TOHYAMA, kohichi
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.61-67
    • /
    • 2001
  • Using mature seed-derived callus, optimal conditions for efficient callus growth and plant regeneration, and regeneration efficiency by callus type were investigated in zoysiagrass (Zoysia japonica steud.). Callus induction was highest when the seeds were cultured on MS medium containing 2 mg/L 2,4-D, 0.2 mg/L BAP, 4 mg/L thiamine-HCl and 100 mg/L $\alpha$-ketoglutaric acid. Callus growth was highest when callus were cultured on MS medium containing 0.5 mg/L 2,4-D, 0.05 mg/L BAP, 4 mg/L thiamine-HCl and 100 mg/L $\alpha$-ketoglutaric acid. Plant regeneration was highest when callus was transferred on MS medium containing 3% maltose and 1 mg/L BAP, or 1 mg/L thidiazuron (TDZ). The combinations and concentrations of 2,4-D and BAP were shown to be critical factors for both the frequency and the type of callus. And four morphologically distinct types of callus were induced from the 2,4-D and BAP treatment. Type I,II and III calli produced shoots upon subculture, while the watery callus, type IV produced roots without shoots. Of four types of callus, type I exhibited the maximum frequency (82%) of shoot regeneration and the minimum frequency (4%) of albinism.

  • PDF

Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast

  • Jeon, Hyunwoo;Durairaj, Pradeepraj;Lee, Dowoo;Ahsan, Md Murshidul;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2076-2086
    • /
    • 2016
  • Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at $30^{\circ}C$. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

Genetic polymorphism analysis of somatic embryo-derived plantlets of Cymbopogon flexuosus through RAPD assay

  • Bhattacharya, S.;Dey, T.;Bandopadhyay, T.K.;Ghosh, P.D.
    • Plant Biotechnology Reports
    • /
    • v.2 no.4
    • /
    • pp.245-252
    • /
    • 2008
  • The genetic status of somatic embryo-derived plantlets of Cymbopogon flexuosus was examined by randomly amplified polymorphic DNA (RAPD) analysis. Auxins such as 2, 4-dichlorophenoxyacetic acid (2, 4-D) (1-4 mg/l) were used in Murashige and Skoog (MS) medium for induction of calli from rhizomatous explants of Cymbopogon flexuosus. Optimum calli were induced on MS medium supplemented with 2, 4-dichlorophenoxyacetic acid (2, 4-D) (3.5 mg/l) alone or in combination with $N^6-benzyladenine$ (2 mg/l). Somatic embryogenesis was achieved from long term calli when cultured on MS medium containing 2, 4-dichlorophenoxyacetic acid (2, 4-D) (2 mg/l) along with $N^6-benzyladenine$ (BA) (1-2 mg/l). Regeneration was achieved when freshly induced embryogenic calli were sub-cultured on MS medium supplemented with $N^6-benzyladenine$ (3 mg/l) alone. Long-term cultured embryos showed profuse minute rooting on regeneration medium supplemented with N6 -benzyladenine (3 mg/l). Microshoots were rooted in the presence of indole-butyric acid (IBA) (2 mg/l). DNA samples from the mother plant and 18 randomly selected regenerated plants from a single callus were subjected to RAPD analysis with 6 arbitrary decamer primers for the selection of putative somaclones. A total of 64 band positions were scored, out of which 19 RAPD bands were polymorphic. From genetic similarity coefficient based on RAPD band data sharing, it was found that the majority of the clones were almost identical or more than 92% similar to the mother plant, except CL2 and CL9 (66%) which showed highest degree of genetic change with CL2 and CL9 showing presence of two non-parental bands each.

Regeneration of Spent Nickel Catalyst for Hydrogenation (수소화 반응용 니켈 폐촉매의 재생)

  • 전종기;박영권;김주식
    • Resources Recycling
    • /
    • v.13 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • Nickel oxide was recovered through roasting of a spent catalyst for hydrogenation reaction. Nickel on Kieselguhr catalysts were prepared by a precipitation method after a treatment of the recovered-nickel oxide with an acid. Effects of roasting temperature of the spent catalyst on recovery of nickel oxide was investigated. Most of nickel oxide could be recovered through roasting of the spent catalyst at $1000^{\circ}C$. In regeneration of catalysts by the precipitation method after the treatment of nickel oxide with an acid, the effect of promoter, precipitation condition and reduction condition on catalytic performance in vegetable oil hydrogenation were investigated. The addition of CaO or $Ce_2$$O_3$ resulted in an increase of catalytic activity.