• Title/Summary/Keyword: Acid catalytic conversion

Search Result 111, Processing Time 0.027 seconds

A Green Protocol for Catalytic Conversion of Epoxides to 1,2-Diacetoxy Esters with Phosphomolybdic Acid Alone or Its Supported on Silica Gel

  • Zeynizadeh, Behzad;Sadighnia, Leila
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2644-2648
    • /
    • 2010
  • Catalytic conversion of structurally different epoxides to the corresponding 1,2-diacetoxy esters was carried out readily with phosphomolybdic acid alone or its supported on $SiO_2$. The reactions were carried out under solvolytic or solvent free conditions within 5-15 min at room temperature. The product 1,2-diacetates were obtained in high to excellent yields. Supporting of phosphomolybdic acid on $SiO_2$ showed the better catalytic activity than $Al_2O_3$. Conversion of optically pure R-(+)-styrene oxide to S-(+)-1,2-diacetoxy-1-phenylethane was carried with phosphomolybdic acid in high yield and stereospecificity.

Sulfuric Acid Catalytic Conversion to Levulinic Acid from Cellulosic Biomass (섬유소계 바이오매스로부터 황산 촉매를 이용한 레블린산 생산)

  • Hyeong-Gyun Ahn;Seungmin Lee;Yi-Ra Lim;Hyunjoon Kim;Jun Seok Kim
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.11-19
    • /
    • 2023
  • Levulinic acid (LA) derived from cellulosic biomass, serves a crucial intermediate that can be used in various chemical conversions. This study focused on optimizing the production of LA using two types of pretreated rice husk (de-ashed and delignificated cellulosic biomass) in a batch reaction system through catalytic conversion with sulfuric acid. To determine the optimal conditions, the conversions of glucose and α-cellulose were examined to compare the effects of pretreatment on the rice husk. The experimental parameters covered a broad spectrum, including temperatures ranging from 140℃ to 200℃, a reaction time was up to 600 minutes, and a substrate to catalyst (acid solution) ratio of 100 g/L. The highest LA yield was 44.8%, achieved from de-ashed rice husk with 3.0 wt.% of sulfuric acid at 180℃ and with a reaction time of 180 minutes. In the case of the delignificated rice husk, a LA yield of 43.6% was obtained with 3.0 wt.% of sulfuric acid at 200℃ and with reaction time of 30 minutes.

A Stud on the Catalytic Removal of Nitric Oxide (질소산화물의 촉매반응에 의한 저감기술에 관한 연구)

  • 홍성수;박종원;정덕영;박대원;조경목;오광중
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • We have studied the reduction of NO by propane over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution by substitution of metal into A or B site of perovskite oxides. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studed. In the $LaCoO_3$ type catalyst, the partial substitution of Ba, Sr into A site enhanced the catalytic activity in the reduction of NO. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3(x=0 \sim 1.9)$ catalyst, the partial substitution of Fe into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. The surface area and catalytic activity of perovskite catalysts prepared by malic acid method showed higher values than those of solid reaction method. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the conversion of NO increased with increasing $O_2$ concentration and contact time. The introduction of water into reactant feed decreased the catalytic activity.

  • PDF

Conversion of Ethanol over Heteropoly Acids (헤테로폴리산 촉매에 의한 에탄올 전환반응)

  • Hong, Seong-Soo;Lee, Sang-Gi;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.549-557
    • /
    • 1993
  • In the conversion of ethanol over heteropoly acids, we have studied catalytic reactivity, reaction mechanism, effect of organic bases added to reactant, and relation between acid strength of ion-exchanged catalysts and catalytic activities. The conversion of ethanol proceeded in the pseudoliquid phase of heteropoly acid. Due to this novel behavior, area increased by supporting with $SiO_2$. The reaction mechanism of ethylene production was different from that of ether production, and various partially substituted Al salts of 12-tungstophosphoric acid showed different catalytic activities.

  • PDF

Conversion of Dimethyl Ether to Light Olefins over a Lead-Incorporated SAPO-34 Catalyst with Hierarchical Structure

  • Kang Song;Jeong Hyeon Lim;Young Chan Yoon;Chu Sik Park;Young Ho Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.548-555
    • /
    • 2023
  • SAPO-34 catalysts were modified with polyethylene glycol (PEG) and Pb to improve their catalytic lifetime and selectivity for light olefins in the conversion of dimethyl ether to olefins (DTO). Hierarchical SAPO-34 catalysts and PbAPSO-34 catalysts were synthesized according to changes in the molecular weight of PEG (M.W. = 1000, 2000, 4000) and the molar ratio of Pb/Al (Pb/Al = 0.0015, 0.0025, 0.0035), respectively. By introducing PEG into the SAPO-34 catalyst crystals, an enhanced volume of mesopores and reduced acidity were observed, resulting in improved catalytic performance. Pb was successfully substituted into the SAPO-34 catalyst frameworks, and an increased BET surface area and concentration of acid sites in the PbAPSO-34 catalysts were observed. In particular, the concentrations of the weak acid sites, which induce a mild reaction, were increased compared with the concentrations of strong acid sites. Then, the P2000-Pb(25)APSO-34 catalyst was prepared by simultaneously utilizing the synthesis conditions for the P2000 SAPO-34 and Pb(25)APSO-34 catalysts. The P2000-Pb(25)APSO-34 catalyst showed the best catalytic lifetime (183 min based on DME conversion > 90%), with an approximately 62% improvement compared to that of the unmodified catalyst (113 min).

Acidity Effect on the Catalytic Properties for Phenol Isopropylation

  • Yu, Jeong Hwan;Lee, Cheol Wi;Wang, Bo;Park, Sang On
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.263-266
    • /
    • 2001
  • Isopropylation of phenol with 2-propanol has been carried out over Na-exchanged ZSM-5 zeolites to determine the effect of catalyst acidity on phenol conversion and product selectivity. The acid type and strength of the catalyst such as Lewis, weak and strong Bronsted acid sites are measured by pyridine adsorbed XPS and the catalytic properties are interpreted in terms of the acid properties. The active site and mechanism for the reaction are suggested based on evidence of study from the reactant adsorbed FT-IR.

Conversion of Methanol to Hydrocarbons over Heteropoly Acids(II) (헤테로폴리산 촉매에 의한 탄화수소로의 메탄올 전환반응(II))

  • Hong, Seong-Soo;Lim, Ki-Chul;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.335-341
    • /
    • 1993
  • In the conversion of methanol, the effect of acide property of heteropoly compounds on the catalytic activity was investigated. The pretreatment of Cu-exchanged 12-tungstophosphoric acid with hydrogen enhanced both the selectivity for propane and the conversion of methanol, and the pretreatment of Al-exchanged 12-tungstophosphoric acid with water enhanced the acid strength of the catalyst. The water added into the reactant decreased the conversion of methanol, while the pretreatment temperature did not affect it but the propylene/propane ratio. Various partially-substituted Al salts of 12-tungstophosphoric acid showed different catalytic activities depending on the degree of Al-substitution.

  • PDF

Catalytic Properties of Borosilicate in Methanol Conversion (메탄올의 전환반응에서 보로실리케이트의 촉매성질)

  • Lee, Gye Su;Jo, Min Su;Jeong, Byeong Gu;Seo, Gon
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.360-369
    • /
    • 1990
  • Borosilicate, HZSM-5 zeolite and iron-substituted borosilicate and HZSM-5 zeolite were prepared and their catalytic properties in methanol conversion were studied. The effects of strength and amount of acid site determined from TPD spectra of ammonia on the product distribution was examined. Selectivity to propylene was high over borosilicate with small amount of strong acid site, but selectivity to aromatic compound was high over HZSM-5 zeolite with large amount of the strong acid site. The participation of weak acid site on the conversion did not confirmed, and the product distribution could be explained in terms of the amount of the strong acid site. Although the amount of the weak acid site was increased by substitution of iron, there was no meaningful change in the product distribution.

  • PDF

Fast and Soft Functionalization of Carbon Nanotube with -SO3H, -COOH, -OH Groups for Catalytic Hydrolysis of Cellulose to Glucose

  • Lusha, Qin;Lee, Sungho;Li, Oi Lun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.3
    • /
    • pp.87-94
    • /
    • 2020
  • Herein, sulfonated carbon nanotubes (CNT) have been prepared in dilute sulfuric acid (H2SO4) via a novel sulfonation approach based on gas-liquid interfacial plasma (GLIP) at room temperature. The sulfonic acid groups and total acid groups densities of CNT after GLIP treatment in 2 M H2SO4 for 45 min can reach to 0.53 mmol/g and 3.64 mmol/g, which is higher than that of sulfonated CNT prepared under 0.5 M / 1 M H2SO4. The plasma sulfonated CNT has been applied as catalysts for the conversion of microcrystalline cellulose to glucose. The effect of hydrolysis temperature and hydrolysis time on the conversion rate and product distribution have been discussed. It demonstrates that the total conversion rate of cellulose increasing with hydrolysis temperature and hydrolysis time. Furthermore, the GLIP sulfonated CNT prepared in 2 M H2SO4 for 45 min has shown high catalytic stability of 85.73 % after three cycle use.

Adsorption and Catalytic Characteristics of Acid-Treated Clinoptilolite Zeolite (산처리한 Clinoptilolite Zeolite 의 흡착 및 촉매특성)

  • Chon Hakze;Seo Gon
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.469-478
    • /
    • 1976
  • Clinoptilolite zeolite samples were treated with hydrochloric acid, sulfuric acid and phosphoric acid of different strength and the adsorption characteristics and crystal structures of the original and acid-treated clinoptilolites were studied. By treating with hydrochloric acid, the adsorbed amount increased to 5-fold for nitrogen, to 3-fold for benzene, but for methanol no significant change was observed. As acid strength increased further, there were declines both in adsorption capacity and crystallinity. The results showed that the increase of adsorbed amount was caused by the rearrangement of the pore entrance and cation exchange. A method for determination of clinoptilolite content in natural mineral based on benzene adsorption on acid-treated sample is proposed. By this method, the original sample used in this study was found to contain approximately 40% of clinoptilolite. Using pulse technique in micro-catalytic reactor system, the catalytic activities of hydrochloric acid-treated clinoptilolites in cumene cracking and toluene disproportionation reactions were measured. For cumene cracking reaction, the maximum conversion was observed for the 0.5 N hydrochloric acid-treated sample. It is instructive to note that the maximum benzene adsorption was also observed for the sample treated with 0.5 N HCl. This suggest that the conversion rate was determined mainly by the rate of transport of reactants and the products through the pore structure. In the toluene disproportionation reaction, the same trend was observed. But the rate of deactivation was high for samples with strong acid sites. Since catalyst having higher activity was deactivated more easily, the conversion maximum was shifted to the sample treated with higher concentration of acid, -1N. The catalytic activity of $Ca^{2+} and La^{3+} ion exchanged samples for the toluene disproportion was much lower than that of acid-treated samples. Introduction of Ca^{2+} and La^{3+}$ into the pore structure apparently decreases the effective pore diameter of acid-treated clinoptilolite thus limiting the diffusion of reactants and products.

  • PDF