• Title/Summary/Keyword: Achyranthes root

Search Result 29, Processing Time 0.029 seconds

Pyrolysis of Waste Oriental Medicine Byproduct Obtained from the Decoction Process of Achyranthes Root (우슬(Achyranthes Root) 탕제 후 얻어진 폐한약재 부산물의 열분해)

  • Park, Ji Hui;Jeong, JaeHun;Lee, Ji Young;Kim, Young-Min;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.474-478
    • /
    • 2018
  • Thermal decomposition of waste Achyranthes Root (WAR) emitted from its decoction process was investigated using a TG analyzer and a fixed-bed reactor. The WAR had the larger C and fixed carbon content than fresh AR (FAR) due to the extraction of hemicelluloses from FAR during decoction process. Thermogravimetric (TG) analysis results also revealed the elimination of hemicellulose by its decoction. Relatively high contents of the cellulose and lignin made high contents of their typical pyrolyzates, such as acids, ketones, furans, and phenols, in the pyrolysis of WAR using the fixed-bed reactor. The increase of pyrolysis temperature from 400 to $500^{\circ}C$ increased yields of oil and gas due to the more effective cracking efficiency of WAR at a higher temperature. The chemical composition of product oil was also changed by applying the higher pyrolysis temperature, which increased the selectivity to furans and phenols.

Inhibition Effect of Achyranthes japonica N. Root Extract on Cathepsin B (우슬뿌리 추출물의 Cathepsin B에 대한 저해효과)

  • Lee Ka-Soon;Lee Jin-Il;Lee Jong-Kuk;Lee Jeong;Kim Gi-Don;Oh Man-Jin
    • Food Science and Preservation
    • /
    • v.12 no.3
    • /
    • pp.275-281
    • /
    • 2005
  • This study was carried out to investigate the cathepsin B inhibition effect by Achyranthes japonica N. root extract in vitro. The methanol/$H_{2}O$(4:1, v/v) extract was fractionated by ethyl acetate(F1), chloroform(F2), chloroform/methanol(3:1, v/v)(F3) and methanol(F4). The yield of F4 in Achyranthes japonica N. root was $8.27\%$. As an index material of Achyranthes japonica N. root, 20-hydroxy ecdysone was detected by TLC, and HPLC and it's content was $0.33\%$. Three isolates(F1, F3, F4) showed the cathepsin B inhibition activity, and F4 showed the highest inhibition activity among them. In the inhibition activity on cathepsin B, leupeptin, 20-hydroxy ecdysone and F4(at the same concentration of 20-hydroxy ecdysone.) were 92, 88 and $97\%$ on BANA($N{\alpha}$-benzoyl-DL-arginine ${\beta}$-naphthylamide) substrate, and 62, 36 and $67\%$ on CLN($N{\alpha}$-CBZ(carbobenzlyoxy)-L-lysine p-nitrophenyl ester HCI) substrate, respectively.

A Study on Physicochemical Properties of Achyranthes japonica and Smilax china Extracts (쇠무릎과 청미래덩굴 부위별 추출물의 이화학적 특성에 관한 연구)

  • Jeong, Kap-Seop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3317-3326
    • /
    • 2011
  • Physicochemical properties of Achyranthes japonica and Smilax china extracts were investigated for the purpose of functionality research on the natural bio-resources. Extraction contents were order of distilled water>methanol>ethanol solvent, the highest free aminoacids were proline from Achyranthes japonica, phosphoserine and glutamic acid from Smilax china, respectively. BI and TAC by spectrophotometric absorbance were order of methanol>ethanol>water in Smilax china leaf extract, but water>methaol>ethanol in Achyranthes japonica leaf extract. EDA was high in ethanol extract from Smilax china leaf and in methanol extract from Smilax china root, and in water extract from Achyranthes japonica. TBA value of Achyranthes japonica leaf and Smilax china leaf-ethanol extracts on olive oil was 82.1% and 84.0%, respectively, for that of an artificial antioxidant BHT. Antimicrobial effect was observed in Achyranthes japonica stem-methanol extract on Bacillus subtillis, in Smilax china leaf-ethanol extract on Bacillus subtillis, Vibrio vulnificus and Salmonella enterica, respectively. And the adsorption of Pb(II) on Achyranthes japonica was higher than that of Cd(II) on Smilax china under the same metal ion concentration.

A Study on a Morphological Identification of Achyranthes and Cyathula Root (우슬(牛膝)의 형태(形態) 감별에 관한 연구)

  • Park, Jae-Sang;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.20 no.2
    • /
    • pp.77-82
    • /
    • 2005
  • Objectives : A morphological classification among Achyranthes japonica Nakai (produced in Korea), A. bidentata Blume (imported from China), and Cyathula officinalis Kuan (used in China exclusively) was made through microscopic observation. Method : The slice of the tested material made by paraffin section technique was colored with Safranine Malachite Green contrast methods, and then observed and photographed by olymphus-BHT. Result : 1. Korean A. japonica Nakai has slim roots, whose diameter is $1{\sim}5\;mm$. 1) Most of its intersection is stele, which includes a lot of vascular bundles. The inside of vascular bundles shows the arrangement of $2{\sim}4$ cycles, the innermost wheel of which is divided into two parts. 2) Parts of parenchymatous cell include Crystal sand of calcium oxalate. 2. The diameter of the roots of Chinese A. bidentata Blume is $0.4{\sim}1\;cm$. 1) The xylem in the vascular bundle in the middle of its intersection is rather big, around which the inner parts of the vascular bundles are arranged in the shape of $2{\sim}4$ cycles around. The most outside part of it is small, and the middle part is gathered into $2{\sim}3$ groups. 2) Parts of parenchymatous cells include Crystal sand of calcium oxalate. 3. The roots of Chinese C. officinalis Kuan is thick, whose diameter is $0.5{\sim}3\;cm$. 1) Vascular bundle of its intersection is spotted, arranged in the shape of $4{\sim}11$ concentric circles, whose center is divided into $2{\sim}9$ groups. 2) Parenchymatous cells include crystal sand and square crystal of calcium oxalate. Conclusion : It is concluded that Achyranthes japonica Nakai, A. bidentata Blume, and C. officinalis Kuan have different shapes in both external forms and internal intersections, so that they can be easily distinguished from one another through microscopic observation.

  • PDF

Bioceramic Effects to Enhance Secondary Metabolites Production in Tissue Culture of Some Medicinal Plants

  • Kim, Yu-Jeong;Hwang, Baik;Ahn, Jun-Cheul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.2
    • /
    • pp.118-122
    • /
    • 2004
  • We have investigated that a couple of soft ferrite ceramic powders having a spinal structure have shown the effect on growth and secondary metabolites production of some medicinal plants cultured in vitro. The addition of the ceramic powders as bare state to culture medium has stimulated the growth of Achyranthes japonica callus and plantlet, adventitious root of Hyoscyamus niger and Platycodon grandiflorum hairy root about 65, 75, 150 and 50%, respectively. Whereas Centella asiatica callus and plantlet, Scopolia parviflora hairy root, and Hyoscyamus albus adventitious root were not affected markedly. Moreover, the ceramic powder has enhanced the growth of H. niger adventitious roots even under conditions of irradiating alone without any direct contact between ceramic powder and media. Based on growth stimulation effect, the ceramic powders have enhanced the gross production of tropane alkaloid in H. niger adventitious root, and polyacetylene in P. grandiflorum hairy root about 35 and 30%, respectively.

Influence of Nitrogen Application Rate on Growth and Dry Matter Yield of Achyranthes japonica Nakai (질소시비량이 쇠무릎의 생육 및 건물수량에 미치는 영향)

  • Kang, Young-Kil
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.2
    • /
    • pp.109-114
    • /
    • 2003
  • To determine the optimum N rate m Jeju island for utricle and root production of Achyranthes japonica Nakai, a medicinal plant, the plants were grown at two plant densities $(50\;and\;100\;hills/m^2$, two plants per hill; mall plots) at six N application rates (0, 6, 12, 18, 24, and 30 kg/10a; split plots) in 2001. There was no significant interaction between plant density and N application rate for all measured agronomic characters. Main root length and roots per hill were 5 and 52% greater, respectively, but N content of stover was lower under lower plant density compared to higher plant density. The other characters were not affected by plant density. N application rate did not significantly affect mall stem diameter, spikes per hill, spike length, utricles per spike, mall root length and diameter, and utricle N content. As N rate increased from 0 to 30 kg/10a, SPAD values and stover N content increased linearly from 35.0 to 40.5 and 1.09 to 1.38%, respectively, and plant height, branches per hill, stover, utricle and root dry matter yields, roots per hill, and top N yield increased quadratically. Spikes per hill were increased in a cubic manner with increased N application rates. N application rate for the maximum dry matter yield of utricle and root in A. japonica was estimated to be 21 kg N/10a.

Allelopathic Effects of Artemisia lavandulaefolia

  • Kil, B.S.;Han, D.M.;Lee, C.H.;Kim, Y.S.;Yun, K.Y.;Yoo, H.G.
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.149-155
    • /
    • 2000
  • The allelopathic effects of Artemisia lavandulaefolia were studied using several test plants and microbes. Aqueous extracts and volatile compounds of A. lavandulaefolia inhibited seed germination, seedling and root growth of the test species such as Achyranthes japonica. Lactuca sativa, Artemisia princeps var. orientalis. Oenothera odorata, Plantago asiatica. Aster yomena, Elsholtzia ciliata, and Raphanus sativus var. hortensis for. acanthiformis. The root growth of test species was more affected than shoot growth by allelochemicals of A. lavandulaefolia. Essential oil of A. lavandulaefolia had antibacterial and antifungal effects. However, the antimicrobial activity of the essential oil was dependent upon the microbial species and concentrations. Callus growth of Oryza sativa, Brassica campestris subsp. napus var. pekinensis and Achyranthes japonica was sensitive by the essential oil of A. lavandulaefolia. Twenty three chemicals were identified from A. lavandulaefolia essential oil by gas chromatography. Primary allelochemicals among them were 1, 8-cineole, 1-$\alpha$-terpineol, $\alpha$-terpinene. camphor, 2-buten-1-ol and azulene. We concluded that aqueous extract and essential oil of A. lavandulaefolia were responsible for allelopathic effects.

  • PDF