• Title/Summary/Keyword: Acetylcholinesterase activity

Search Result 341, Processing Time 0.026 seconds

Improvement Effect of Stachys sieboldii MIQ. According to Mixing Ratio of Calcium on Memory Impairment in Scopolamine-induced Dementia Rats (칼슘 배합 비율에 따른 초석잠의 scopolamine 치매유도 흰쥐에 대한 기억손상 개선 효과)

  • Choe, Da-Jeong;Ahn, Hee-Young;Kim, Young-Wan;Kim, Tae-Hoon;Kim, Man-do;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.812-818
    • /
    • 2016
  • The aim of this study was to investigate the anti-amnesic effect of Stachys sieboldii MIQ. according to the mixing ratio of calcium on scopolamine-induced learning and memory impairment, in vivo. At the end of the adaptation period, SD rats were divided into a normal group (N), a control group (C: scopolamine), a positive control group (PC: scopolamine + tacrine), and a sample group (S: scopolamine + Stachys sieboldii MIQ., 1CS: scopolamine + low calcium-mixed Stachys sieboldii MIQ., 5CS: scopolamine + high calcium-mixed Stachys sieboldii MIQ.), and were tested with learning and memory tests. The C and CS groups were found to have a decreased scopolamine-induced memory deficit in the Y-maze and water maze tests. Brain tissue analysis showed that the CS group decreased acetylcholinesterase (AChE) activity and increased acetylcholine (Ach) content, both of which are indicative of neuronal cell activity. From a light microscopy study, the nucleus of neurons in the hippocampus of the brain was more shrunken or condensed in the C group compared to the CS group. In the CS group, the damage to the neurons in the hippocampus of the brain was suppressed. These results suggest that Stachys sieboldii MIQ. according to the mixing ratio of calcium provides a significant anti-amnesic effect against scopolamine-induced cholinergic system deficits and cognitive impairment.

Cholinesterase Activity in the Dental Epithelium of Hamsters During Tooth Development

  • Yang, Jin-Young;Kim, Tak-Heun;Lee, Ju-Yeon;Jiang, Eun-Ha;Bae, Young;Cho, Eui-Sic
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.169-175
    • /
    • 2010
  • Cholinesterase (ChE) is one of the most ubiquitous enzymes and in addition to its well characterized catalytic function, the morphogenetic involvement of ChE has also been demonstrated in neuronal tissues and in non-neuronal tissues such as bone and cartilage. We have previously reported that during mouse tooth development, acetylcholinesterase (AChE) activity is dynamically localized in the dental epithelium and its derivatives whereas butyrylcholinesterase (BuChE) activity is localized in the dental follicles. To test the functional conservation of ChE in tooth morphogenesis among different species, we performed cholinesterase histochemistry following the use of specific inhibitors of developing molar and incisors in the hamster from embryonic day 11 (E11) to postnatal day 1 (P1). In the developing molar in hamster, the localization of ChE activity was found to be very similar to that of the mouse. At the bud stage, no ChE activity was found in the tooth buds, but was first detectable in the dental epithelium and dental follicles at the cap and bell stages. AChE activity was found to be principally localized in the dental epithelium whereas BuChE activity was observed in the dental follicle. In contrast to the ChE activity in the molars, BuChE activity was specifically observed in the secretory ameloblasts of the incisors, whilst no AChE activity was found in the dental epithelium of incisors. The subtype and localization of ChE activity in the dental epithelium of the incisor thus differed from those of the molar in hamster. In addition, these patterns also differed from the ChE activity in the mouse incisor. These results strongly suggest that ChE may play roles in the differentiation of the dental epithelium and dental follicle in hamster, and that morphogenetic subtypes of ChE may be variable among species and tooth types.

Phenolic Content, Antioxidant Effect and Acetylcholinesterase Inhibitory Activity of Korean Commercial Green, Puer, Oolong, and Black Teas (국내 시판 녹차, 보이차, 우롱차 및 홍차의 폴리페놀 함량, 항산화 및 아세틸콜린에스터레이스 저해 효과)

  • Jeong, Chang-Ho;Kang, Su-Tae;Joo, Ok-Soo;Lee, Seung-Cheol;Shin, Young-Hee;Shim, Ki-Hwan;Cho, Sung-Hwan;Choi, Sung-Gil;Heo, Ho-Jin
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.230-237
    • /
    • 2009
  • The phenolic contents, antioxidant effects, and acetylcholinesterase inhibitory activities of hot water extracts prepared from various Korean commercial teas(green tea, puer tea, oolong tea, and black tea) were investigated. Total phenolic contents were in the range 72.03-85.62 mg/g. Flavonol contents of hot water extracts from green tea, puer tea, oolong tea, and black tea were 350.96, 254.17, 334.48, and 240.23 mg/100 g, respectively. Catechin contents were 2,920.35 mg/100 g in green tea, 1,016.23 mg/100 g in puer tea, 2,824.22 mg/100 g in oolong tea, and 1,006.51 mg/100 g in black tea. The highest caffeine content was in the green tea extract. All four extracts scavenged $ABTS^{{\cdot}+}$ radicals in a concentration-dependent manner, and the green tea extract was the most potent in this regard. The highest reducing power was observed in the green tea extract. All four extracts exhibited considerable antioxidative activities in linoleic acid autoxidation, $\beta$-carotene bleaching, and acetylcholinesterase inhibition assays; the effects were concentration-dependent and decreased in the order green tea > oolong tea > puer tea > black tea.

Protective Effect of Fucoidan Extract from Ecklonia cava on Hydrogen Peroxide-Induced Neurotoxicity

  • Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Park, Sang Hyun;Kwon, Bong Seok;Kim, Gun-Hee;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.40-49
    • /
    • 2018
  • We evaluated the antioxidant activity and neuronal cell-protective effect of fucoidan extract from Ecklonia cava (FEC) on hydrogen peroxide ($H_2O_2$)-induced cytotoxicity in PC-12 and MC-IXC cells to assess its protective effect against oxidative stress. Antioxidant activities were examined using the ABTS radical scavenging activity and malondialdehyde-inhibitory effect, and the results showed that FEC had significant antioxidant activity. Intracellular ROS contents and neuronal cell viability were investigated using the DCF-DA assay and MTT reduction assay. FEC also showed remarkable neuronal cell-protective effect compared with vitamin C as a positive control for both $H_2O_2$-treated PC-12 and MC-IXC cells. Based on the neuronal cell-protective effects, mitochondrial function was analyzed in PC-12 cells, and FEC significantly restored mitochondrial damage by increasing the mitochondrial membrane potential (${\Delta}{\Psi}m$) and ATP levels and regulating mitochondrial-mediated proteins (p-AMPK and BAX). Finally, the inhibitory effects against acetylcholinesterase (AChE), which is a critical hydrolyzing enzyme of the neurotransmitter acetylcholine in the cholinergic system, were investigated ($IC_{50}$ value = 1.3 mg/ml) and showed a mixed (competitive and noncompetitive) pattern of inhibition. Our findings suggest that FEC may be used as a potential material for alleviating oxidative stress-induced neuronal damage by regulating mitochondrial function and AChE inhibition.

EFFECT OF PHENOBARBITAL AND / OR SKF 525-A ON THE METABOLISM AND ACUTE TOXICITY OF PARATHION IN ADULT FEMALE PATS (자성 흰쥐의 파라치온 급성독성 및 대사에 미치는 페노바르비탈 및 SKF-525-A의 영향)

  • Choi, Jae-Hwa;Yim, Hye-Kyung;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 1990
  • Effects of altering hepatic mixed-function oxidase (MFO) enzyme activities on the metabolism and acute toxicity of parathio were investigated in adult female rats. In vitro hepatic metabolism of parathion to paraoxon was increased by phenobarbital pretreatment (50 mg/kg/day, ip, for 4 consecutive days) and SKF 525-A (50 mg/kg, ip, 1 hr prior to sacrifice) decreased paraoxon formation indicating that phenobarbital induces that form(s) of cytochrome P-450 catalyzing conversion of parathion to paraoxon. Degradation of paraoxon to p-nitrophenol was increased by phenobarbital pretreatment, but not affected by SKF 525-A suggesting that MFO activities play only a minor role in the detoxification of the active metabolite of this insecticide. The phenobarbital-induced increase in paraoxon formation was partially antagonized by SKF 525-A. Significant activity for both parathion activation and paraoxon degradation was also observed in the lung preparation, however, this extrahepatic parathion and paraoxon metabolizing activity was not induced by phenobarbital or inhibited by SKF 525-A pretreatment. Phenobarbital pretreatment increased paraoxon level in livers of rats when measured 3 hr following parathion injection (2 mg/kg, ip). SKF 525-A did not alter parathion or paraoxon levels in brain, blood and liver. Phenobarbital pretreatment decreased the toxicity of parathion (4mg/kg, ip) or paraoxon (1.5 mg/kg, ip) as determined by decreases in lethality and inhibition of brain and lung acetylcholinesterases. An additional SKF 525-A treatment failed to decrease the protective effects of phenobarbital against parathion or paraoxon toxicity. These results suggest that some unknown factors other than hepatic MFO induction are involved in the protective action of phenobarbital against parathion and paraoxon toxicity.

  • PDF

Effects of Phellodendron amurense Extract on the Alzheimer's Disease Model (황백(黃柏)이 Alzheimer's Disease 병태(病態) 모델에 미치는 영향)

  • Kim, Young-Pyo;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2005
  • This experiment was designed to investigate the effect of Phellodendron amurense(PLDA) on the Alzheimer's disease. The effects of PLDA extract on $IL-1{\beta}$, IL-6, amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell treated by $A{\beta}$ plus $rIL-1{\beta}$ and AChE activity of PC-12 cell lysate treated by $A{\beta}$ plus $rIL-1{\beta}$ and behavior of memory deficit mice induced by scopolamine and mice glucose, uric acid, AChE activity of memory deficit rats induced by scopolamine were investigated, respectively. PLDA extract suppressed $IL-1{\beta}$, IL-6, APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta}$ plus $rIL-1{\beta}$ ; AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$ plus $rIL-1{\beta}$. PLDA extract increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit rats induced by scopolamine. PLDA extract group showed significantly inhibitory effect on the memory deficit of mice induced by scopolamine in the experiment of Morris water maze. According to the above results, it is suggested that PLDA extract might be usefully applied for prevention and treatment of Alzheimer's disease.

Effects of Single Treatment of Anti-Dementia Drugs on Sleep-Wake Patterns in Rats

  • Jung, Ji-Young;Roh, Moo-Taek;Ko, Kyung-Kyun;Jang, Hwan-Soo;Lee, Seong-Ryong;Ha, Jeoung-Hee;Jang, Il-Sung;Lee, Ho-Won;Lee, Maan-Gee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.4
    • /
    • pp.231-236
    • /
    • 2012
  • We studied the effects of acetylcholinesterase inhibitors, donepezil and galantamine, and an N-methyl-D-aspartate (NMDA) receptor blocker, memantine, on sleep-wake architecture in rats. Screw electrodes were chronically implanted into the frontal and parietal cortex for the electroencephalography (EEG). EEG was recorded with a bio-potential amplifier for 8 h from 09:30 to 17:30. Vibration was recorded to monitor animal activity with a vibration measuring device. Sleep-wake states such as wake (W), slow-wave sleep (S) and paradoxical or rapid eye movement sleep (P), were scored every 10 sec by an experimenter. We measured mean episode duration and number of episode to determine which factor sleep disturbance was attributed to. Donepezil and memantine showed a significant increase in total W duration and decreases in total S and P duration and delta activity. Memantine showed increases in sleep latency and motor activity. Changes of S and P duration in memantine were attributed from changes of mean episode duration. Galantamine had little effect on sleep architecture. From these results, it is showed that galantamine may be an anti-dementia drug that does not cause sleep disturbances and memantine may be a drug that causes severe sleep disturbance.

Development of Cholinesterase Inhibitors using 1-Benzyl Piperidin-4-yl (α)-Lipoic Amide Molecules

  • Lee, Seung-Hwan;Kim, Beom-Cheol;Kim, Jae-Kwan;Lee, Hye Sook;Shon, Min Young;Park, Jeong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1681-1686
    • /
    • 2014
  • A series of hybrid molecules between (${\alpha}$)-lipoic acid (ALA) and 4-amino-1-benzyl piperidines were synthesized and their in vitro cholinesterase (acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)) inhibitory activities were evaluated. Even though the parent compounds did not exhibit any inhibitory activity against cholinesterase (ChE) with the exception of compound 14 ($IC_{50}=255.26{\pm}4.41$ against BuChE), all hybrid molecules demonstrated BuChE inhibitory activity. Some hybrid compounds also displayed AChE inhibitory activity. Specifically, compound 17 was shown to be an effective inhibitor against both AChE ($IC_{50}=1.75{\pm}0.30{\mu}M$) and BuChE ($IC_{50}=5.61{\pm}1.25{\mu}M$) comparable to galantamine ($IC_{50}=1.7{\pm}0.9{\mu}M$ against AChE and $IC_{50}=9.4{\pm}2.5{\mu}M$ against BuChE). Inhibition kinetic studies using compound 17 indicated a mixed inhibition type for AChE and a noncompetitive inhibition type for BuChE. Its binding affinity ($K_i$) values to AChE and BuChE were $3.8{\pm}0.005{\mu}M$ and $7.0{\pm}0.04{\mu}M$, respectively.

Two Androstane Derivatives from the Cultures of Fungus Marasmiellus ramealis (Bull.) Singer

  • Yang, Ning-Ning;Ma, Qing-Yun;Huang, Sheng-Zhuo;Dai, Hao-Fu;Guo, Zhi-Kai;Yu, Zhi-Fang;Zhao, You-Xing
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3224-3226
    • /
    • 2014
  • A new androstane derivative, $4{\beta}$-methyl-15-oxa-$14{\beta}$-androstane-7-ene-$4{\alpha}$-carboxylic acid (1) and a known one $4{\beta}$-methyl-15-oxa-$14{\beta}$-androstane-7-ene-$4{\alpha}$-hydroxyl (2) were isolated from the EtOAc extract of the cultures of the fungus Marasmiellus ramealis (Bull.) Singer. Their structures were elucidated on the basis of 1D and 2D NMR as well as MS spectroscopic data analysis. The inhibitory activity of two isolates against acetylcholinesterase (AChE) revealed that compound 1 exhibited definitely inhibitory activity.

Mentha arvensis Attenuates Cognitive and Memory Impairment in Scopolamine-treated Mice (Scopolamine 처리에 의한 인지 및 기억력 손상 마우스에서 박하의 효과)

  • Lee, Jihye;Kim, Hye-Jeong;Jang, Gwi Yeong;Seo, Kyung Hye;Kim, Mi Ryeo;Choi, Yun Hee;Jung, Ji Wook
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.1
    • /
    • pp.70-77
    • /
    • 2020
  • Mentha arvensis is used traditional medicine to treat various disorders. In the present study, M. arvensis were extracted by the solid-phase microextraction (SPME) method and analyzed by gas chromatograph-mass spectrometry (GC-MS). We investigated the protective effects and mechanisms of a M. arvensis extract on scopolamine-induced cognitive and memory impairment. Mice were orally pretreated with a M. arvensis extract or normal saline, and then behavior tests were conducted 30 min after scopolamine injection. The antioxidant capacities were analyzed by free radical scavenging (DPPH and ABTS). Acetylcholinesterase (AChE) activity were also measured using Ellman's method ex vivo test. In behavior tests, percent of spontaneous alteration, escape latency and swimming time in target quadrant were improved by the administration of the M. arvensis extract, which suggests that the M. arvensis extract improves memory function in the scopolamine-treated mice model. In addition, M. arvensis extract showed inhibition of the free radical and AChE activity. The results of the present study suggest that the M. arvensis extract ameliorates scopolamine-induced cognitive and memory deficits through the inhibition of free radicals and AChE activity. Therefore, M. arvensis may be a promising neuroprotective agent for management of learning and memory improvements in human dementia patients.