• 제목/요약/키워드: Acetylcholine esterase

검색결과 54건 처리시간 0.026초

복숭아혹진딧물(Myzus persicae)의 imidacloprid에 대한 저항성 기작 (Resistance Mechanisms of Green Peach Aphid, Myzus persicae (Homoptera: Aphididae), to Imidacloprid)

  • 최병렬;이시우;유재기
    • 한국응용곤충학회지
    • /
    • 제40권3호
    • /
    • pp.265-271
    • /
    • 2001
  • Imidacloprid에 저항성을 보이는 복숭아혹진딧물에 대해 몇가지 저항성 기작을 조사하였다. 복숭아혹진딧물에 약제를 처리한 후의 체벽잔류량은 처리 후 시간이 지남에 따라 서서히 감소되었으나 감수성계통과 저항성계통 간에 체벽침투력의 유의성은 없었다. 체내잔류량은 양 계통에서 시간이 지남에 따라 점차 증가되었으며 감수성에서 많았다. 배설량은 저항성계통이 감수성계통보다 많아 약제 대시가 빠르게 나타났다. Imidacloprid 저항성계통의 acetylcholine-sterase (AChE) 활성은 감수성계통 보다 약 1.4배 높았으며, imidacloprid는 AChE를 저해하지 않았다. 저항성계통에 대해 산화효소 저해제인 PBO(piperonyl butoxide)와 esterase 저해제인 IBP (iprobenfos)를 혼합하여 사용한 결과 Imidacloprid : PBO의 비율은 1 : 1과 1 : 5에서 각각 69.4, 250배의 독성을 보였으며, IBP와 혼합사용(1 : 1과 1 : 5)에서는 각각 227, 80.6배의 독성을 보였다. 감수성계통에 PBO와 IBP를 imidacloprid와 같은 비율로 혼합처리 하였을 경우 단독처리와 독성차이가 보이지 않았다. $\alpha$-naphtyl butyrate와 $\beta$-naphtyl acetate 기질을 사용하여 비특이적 esterase의 활성을 측정한 결과 저항성계통의 감수성 계통보다 esteraseghkf성이 높게 나타났다. 따라서 imidacloprid 저항성 복숭아혹진딧물의 저항성 기작에는 산화효소와 esterase가 관여되고 있음을 알 수 있었다.

  • PDF

Fluoranthene 독성에 기인하는 비정상적 어류행동의 신경생화학적 분석 (Neurobiochemical Analysis of Abnormal Fish Behavior Caused by Fluoranthene Toxicity)

  • 신성우;조현덕;전태수;김정상;이성규;고성철
    • Environmental Analysis Health and Toxicology
    • /
    • 제18권2호
    • /
    • pp.155-163
    • /
    • 2003
  • Fluoranthene, a common polycyclicaromatic hydrocarbon (PAH), exhibits phototoxicity which may affect aquatic organisms. The eventual goal of this study is to develop a biomarker of Japanese medaka (Oryzias latipes) used in monitoring hazardous chemicals in the ecosystem. In this study we investigated neural toxicity of fluoranthene in Japanese medaka (Oryzias latipes) along with comparative analysis of corresponding behavioral response. The untreated individuals shooed normal behavioral characteristics (i. e., smooth and linear movements). The treated fish, however, showed stopping and abrupt change of orientation (100 ppb), and severely reduced locomotive activity and enhanced surfacing activity (1,000 ppb). Treatment of the medaka fish with fluoranthene caused a significant suppresson of acetycholine esterase (AChE) activities in the body portion but not in the head portion. When fish were exposed to 1,000 ppb of fluoranthene for 24 hr, the body AChE activities decreased from 126.${\pm}$31.89 (nmoles substrate hydrolyzed per min per mg protein) to 49.51${\pm}$11.99. Expressions of tyrosine hydroxylase (TH) protein in the different organs from both head and body portions were comparatively analyzed using an immunohistochemical technique. Five organs of the medaka fish showing a strong TH protein expression were the olfactory bulb, hypothalamus, optic lobe, pons and myelencephalon regions. This study provides molecular and neurobehavioral bases of a biomonitoring system for toxic chemicals using fish as a model organism.

Two New Bibenzyl Glucosides from Dendrobium chrysotoxum

  • Dong, Fa-Wu;Luo, Huai-Rong;Wan, Qin-Li;Xu, Feng-Qing;Fan, Wei-Wei;Wang, Kai-Jin;Li, Ning;Hu, Jiang-Miao
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2247-2250
    • /
    • 2012
  • Two new bibenzyl glucosides, 3,3',4',5-tetramethoxybibenzyl-4-O-${\beta}$-D-glucopyranoside (1) and 3,4,4',5-tetramethoxybibenzyl-3'-O-${\beta}$-D-glucopyranoside (2), together with five known ones, chrysotobibenzyl (3), erianin (4), chrysotoxine (5), gigantol (6) and tristin (7) were isolated from the stems of Dendrobium chrysotoxum. The structures of those compounds were elucidated by extensive spectroscopic analysis. Moreover, compounds 1-7 were assessed for inhibitory activity of two enzymes-AChE (acetylcholine esterase) and BChE (butyrylcholine esterase).

Insecticide Targets: Learning to Keep Up with Resistance and Changing Concepts of Safety

  • Casida, John E.;Quistad, Gary B.
    • Journal of Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.185-191
    • /
    • 2000
  • Pest insect control is dependent on about 200 insecticides that work by relatively few mechanisms. The targets they disrupt are mostly involved in the nervous system, respiratory chain, growth and development, or the gut. The major nerve targets are: acetylcholinesterase for the organophosphates and methylcarbamates; the nicotinic acetylcholine receptor for the neonicotinoids; the $\gamma$-aminobutyric acid receptor for several chlorinated hydrocarbons and fipronil; the voltage-gated sodium channel for DDT and pyrethroids. Selection of resistant strains often confers cross-resistance to some or all other insecticides working at the same site. The toxicological properties of different compounds acting on the same target are increasingly considered together, summating the risk even though the compounds are of quite diverse chemical types. Continuing attention is also being given to secondary targets not involved in the primary mechanism of toxicity but instead in side effects that must be considered in the overall safety evaluation. Research on insecticide targets is important in learning to keep up with resistance and changing concepts and policies on safety. These relationships are illustrated by recent studies in the Environmental Chemistry and Toxicology Laboratory of the University of California at Berkeley.

  • PDF

Oral Administration of Gintonin Attenuates Cholinergic Impairments by Scopolamine, Amyloid-β Protein, and Mouse Model of Alzheimer's Disease

  • Kim, Hyeon-Joong;Shin, Eun-Joo;Lee, Byung-Hwan;Choi, Sun-Hye;Jung, Seok-Won;Cho, Ik-Hyun;Hwang, Sung-Hee;Kim, Joon Yong;Han, Jung-Soo;Chung, ChiHye;Jang, Choon-Gon;Rhim, Hyewon;Kim, Hyoung-Chun;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • 제38권9호
    • /
    • pp.796-805
    • /
    • 2015
  • Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer's disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced $[Ca^{2+}]_i $ transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated $[Ca^{2+}]_i $ transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 1 2 weeks) also significantly attenuated amyloid-${\beta}$ protein ($A{\beta}$)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to $A{\beta}$ and could be utilized for AD prevention or therapy.

Synthesis and Biological Activity of Conformationally Controlled 2-PAM Derivatives

  • Jahng, Yurng-Dong;Park, Jae-Gyu;Yoo, Jung-Whey;Kim, Sun-Young;Kim, Tae-An;Yang, Jae-Ho
    • Archives of Pharmacal Research
    • /
    • 제23권3호
    • /
    • pp.222-225
    • /
    • 2000
  • A series of conformationally controlled 2-PAM derivatives were prepared from 2-acetylpyridine and 2,3-pyrido[b]cycloalkenones in two steps and their reactivities towards parathion poisoned AChE were evaluated. The most planar 2,3-pyrido[b]cyclohexanone oxime methiodide showed an activity comparable to 2-PAM Implying E-syn is that the most active comformation of 2-PAM in the biological system.

  • PDF

스코폴라민으로 유도된 기억력 손상에 대한 복신의 보호 효과 및 작용기전 연구 (Effect of Poria Cocos on the Scopolamine-induced Memory Impairment and Its Underlying Molecular Mechanism)

  • 제갈경환;박성준;김창열;이찬;박종현;장정희
    • 동의생리병리학회지
    • /
    • 제24권2호
    • /
    • pp.228-235
    • /
    • 2010
  • This study was performed to investigate the memory enhancing effect of Poria cocos Wolf (Hoelen cum radix) against scopolamine-induced amnesia in Sprague-Dawley (SD) rats. To induce amnesia, scopolamine (0.75 mg/kg) was intraperitonically injected into SD rats 30 min before starting behavior tests. We have conducted Morris water-maze and Y-maze tests to monitor learning and memory functions. Poria cocos effectively reversed scopolamine-induced memory impairment in SD rats which was represented by an improvement of mean escape latency in water-maze test and spontaneous alterations in Y-maze test. To elucidate possible molecule mechanism, we have measured mRNA as well as protein expression of acetylcholine esterase (AchE), choline acetyltransferase (ChAT), muscarinic acetylcholine receptor (mAchR), and brain-derived neurotrophic factor (BDNF) using RT-PCR and Western blot analysis, respectively. Poria cocos increased mRNA levels of ChAT and mAchR in rat hippocampus compared with those in the scopolamine-injected amnesic group. In addition, protein expression of ChAT and BDNF was also elevated by Poria cocos intake. Furthermore, as an upstrem regulator, the activation of cAMP response element-binding protein (CREB) was assessed by immunohistochemistry. In this immunohistochemical analysis, the phosphorylation of CREB (p-CREB) was reduced by scopolamine injection, which was restored back to control levels by administration of Poria cocos. These results suggest that Poria cocos may improve memory and cognitive deficit in amnesia and have therapeutic potentials through up-regulation of ChAT, mAchR, and BDNF, which seemed to be mediated by activation of CREB.

Anticholinesterase and Anti-inflammatory Constituents from Beilschmiedia pulverulenta Kosterm

  • Wan Salleh, Wan Mohd Nuzul Hakimi;Ahmad, Farediah;Yen, Khong Heng;Zulkifli, Razauden Mohamed
    • Natural Product Sciences
    • /
    • 제22권4호
    • /
    • pp.225-230
    • /
    • 2016
  • Phytochemical investigation from the stem bark of Beilschmiedia pulverulenta resulted in the isolation of five lignans, (+)-yangambin (1), (+)-sesartemin (2), (+)-excelsin (3), (+)-sesamin (4), and (+)-syringaresinol (5), together with lupeol (6), lupenone (7), ${\beta}-sitosterol$ (8), and ${\beta}-sitostenone$ (9). Their structures were established by the analysis of their spectroscopic (1D and 2D NMR) and spectrometric (MS) data, as well as by comparison with those reported in the literature. The isolated lignans were tested for their anticholinesterase (AChE: acetylcholine esterase and BChE: butyryl cholineesterase) and anti-inflammatory (COX-2: cyclooxygenase-2 and LOX: lipoxygenase) activities. All the isolated lignans (1 - 5) exhibited significant inhibition activities in AChE/BChE and COX-2/LOX assays with $IC_{50}$ values ranging from $168.8-504.2{\mu}M$ and $21.0-59.4{\mu}M$, respectively.

잉어 (Cyprinus carpio)의 다중바이오마커를 이용한 Benzo[a]pyrene의 영향평가 (Effect Evaluation of Benzo[a]pyrene on Multiple Biomarkers in Common Carp (Cyprinus carpio))

  • 김우근;김자현;염동혁;이성규
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권3호
    • /
    • pp.171-178
    • /
    • 2008
  • 수백여 종의 개별물질이 불완전 연소 혹은 유기물의 열분해로 인해 발생되는 다환방향족 탄화수소(PAHs)는 환경에서 중요한 오염원이 되고 있다. 본 연구는 다양한 바이오마커를 이용하여 수서생태계에 벤조피렌(benzo[a]pyrene)과 같은 다환방향족 탄화수소의 영향을 분석하였고, 이에 대한 통합적 결과 모델을 도출하였다. 즉, 잉어(Cyprinus carpio)를 이용하여 여러 농도의 벤조피렌(3, 12, $34{\mu}g/L$, 측정농도 기준)에 10일간 노출시킨 다음, DNA single-strand break, ethoxyresorufin-O-deethylase (EROD), acetylcholine esterase (AChE)와 vitellogenin (VTG)의 농도를 측정하였다. 벤조피렌은 잉어의 DNA 손상을 유도하였고, 낮은 농도에서 EROD와 VTC의 유의적인 활성을 보였으나, 신경전달물질과 관련이 깊은 AChE 효소활성에는 영향을 미치지 않았다. 이 결과를 star plot를 이용하여 통합 및 분석하였으며, 노출농도에 따른 통합 반응지수(integrated biomarker response value: IBR)로 나타내었다. 이런 다양한 바이오마커의 결과들은 벤조피렌에 대한 어류의 영향과 수생태 모니터링 자료로 이용 가능할 것으로 여겨지며, 통합반응지수는 생태위해성평가에서 유용한 도구로 쓰일 가치가 있는 것으로 평가된다.

정상 동물모델에서 다시마(Saccharina japonica) 발효물의 기억력 개선 효과 (Memory-improving Effects of Fermented Sea Tangle Saccharina japonica in Normal Mice)

  • 류제광;조영홍;장성준;이배진
    • 한국수산과학회지
    • /
    • 제49권2호
    • /
    • pp.131-136
    • /
    • 2016
  • Marine organisms are sources of many bioactive compounds, such as essential fatty acids, essential amino acids, vitamins, and minerals, making them useful candidates for the production of safe bioactive substances. They also synthesize glutamic acid, which can be used to produce γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system (CNS), via fermentation with Lactobacillus brevis BJ-20. This study investigated the degree to which fermented sea tangle (FST) inhibits enzymes such as acetylcholine esterase (AChE) and prolyl endopeptidase (PEP) and affects memory of normal mice using the T-maze test. FST inhibited more than 90% of AChE at 1 mg/mL and 50% of PEP at 8 mg/mL. Oral FST (100 mg/kg) significantly improved performance of normal mice on the T-maze. Therefore, sea tangle fermented with L. brevis BJ20 effectively contributes to memory improvement and might be a useful functional food ingredient.