Effect Evaluation of Benzo[a]pyrene on Multiple Biomarkers in Common Carp (Cyprinus carpio)

잉어 (Cyprinus carpio)의 다중바이오마커를 이용한 Benzo[a]pyrene의 영향평가

  • Kim, Woo-Keun (Environmental Toxicology Team, Korea Institute of Toxicology) ;
  • Kim, Ja-Hyun (Division of Non-Clinical Studies, Korea Institute of Toxicology) ;
  • Yeom, Dong-Hyuk (Division of Non-Clinical Studies, Korea Institute of Toxicology) ;
  • Lee, Sung-Kyu (Environmental Toxicology Team, Korea Institute of Toxicology)
  • 김우근 (안정성평가연구소 환경독성연구팀) ;
  • 김자현 (안전성시험본부) ;
  • 염동혁 (안전성시험본부) ;
  • 이성규 (안정성평가연구소 환경독성연구팀)
  • Published : 2008.09.30

Abstract

수백여 종의 개별물질이 불완전 연소 혹은 유기물의 열분해로 인해 발생되는 다환방향족 탄화수소(PAHs)는 환경에서 중요한 오염원이 되고 있다. 본 연구는 다양한 바이오마커를 이용하여 수서생태계에 벤조피렌(benzo[a]pyrene)과 같은 다환방향족 탄화수소의 영향을 분석하였고, 이에 대한 통합적 결과 모델을 도출하였다. 즉, 잉어(Cyprinus carpio)를 이용하여 여러 농도의 벤조피렌(3, 12, $34{\mu}g/L$, 측정농도 기준)에 10일간 노출시킨 다음, DNA single-strand break, ethoxyresorufin-O-deethylase (EROD), acetylcholine esterase (AChE)와 vitellogenin (VTG)의 농도를 측정하였다. 벤조피렌은 잉어의 DNA 손상을 유도하였고, 낮은 농도에서 EROD와 VTC의 유의적인 활성을 보였으나, 신경전달물질과 관련이 깊은 AChE 효소활성에는 영향을 미치지 않았다. 이 결과를 star plot를 이용하여 통합 및 분석하였으며, 노출농도에 따른 통합 반응지수(integrated biomarker response value: IBR)로 나타내었다. 이런 다양한 바이오마커의 결과들은 벤조피렌에 대한 어류의 영향과 수생태 모니터링 자료로 이용 가능할 것으로 여겨지며, 통합반응지수는 생태위해성평가에서 유용한 도구로 쓰일 가치가 있는 것으로 평가된다.

Keywords

References

  1. Akcha F, Izuel C, Venier P, Budzinski H, Burgeot T and Narbonne JF. Enzymatic biomarker measurement and study of DNA adduct formation in benzo[a]pyrene-contaminated mussels, Mytilus galloprovincialis, Acuatic toxicology 2000; 49: 269-287 https://doi.org/10.1016/S0166-445X(99)00082-X
  2. Anderson MJ, Miller MR, and Hinton DE. In vitro modulation of 17$\beta$-estradiol-induced vitellogenin synthesis: effects of cytochrome P4501A1 inducing compounds on rainbow trout (Oncorhychus mykiss) liver cells, Acuatic toxicology 1996; 34: 210-218
  3. Beliaeff B and Burgeot T. Integrated biomarker response: a useful tool for ecological risk assessment, Environ Toxicol Chem 2002; 21: 1316-1322 https://doi.org/10.1897/1551-5028(2002)021<1316:IBRAUT>2.0.CO;2
  4. Bols NC, Schirmer K, Joyce EM, Dixon DG, Greenberg BM and Whyte JJ. Ability of polycyclic aromatic hydrocarbons to induce 7-ethoxyresorufin-O-deethylase activity in a trout liver cell line, Ecotoxicol Environ Saf 1998; 44: 118-128 https://doi.org/10.1006/eesa.1999.1808
  5. Bucheli TD and Fent K. Indcution of cytochrome P450 as a biomarker for environmental contamination in aquatic ecosystems, Crit Rev Environ Sci Technol 1995; 25: 201- 268 https://doi.org/10.1080/10643389509388479
  6. Evanson M and Van Der Kraak GJ. Stimulatory effects of selectd PAHs on testosterone production in goldfish and rainbow trout and possible mechanisms of action, Comp Biochem Physiol C Toxicol Pharmacol 2001; 130: 249-258 https://doi.org/10.1016/S1532-0456(01)00246-0
  7. Franzle O. Complex bioindication and environmental stress assessment, Ecological indicators 2006; 6: 114-136 https://doi.org/10.1016/j.ecolind.2005.08.015
  8. Goksoyr A, Beyer J, Egass E and Grosvik BE. Biomarker responses in flounder (Platichthys flesus) and their use in pollution monitoring, Marine Pollution Bulletin 1996; 6: 36-45
  9. Jung JH, Kim SJ, Lee TK, Shim WJ, Woo SN, Kim DJ and Han CH. Biomarker responses in caged rockfish (Sebastes schlegeli) from Masan bay and Haegeumgang, South Korea, Marine Pollution Bulletin 2008; 57: 599-606 https://doi.org/10.1016/j.marpolbul.2007.12.006
  10. Kennedy SW and Jones SP. Simultaneous measurement of cytochrome P4501A catalytic activity and total protein concentration with a fluorescence plate reader, Anal Biochem 1994; 222: 217-223 https://doi.org/10.1006/abio.1994.1476
  11. Kim WK, Lee SK and Kim JS. The identification of HSC70 as a biomarker for copper exposure in medaka fish, The Korean Society of Environmental Toxicology 2007; 22:197-202
  12. Kim GB, Lee RF and Maruya KA. Application of single cell gel electrophoresis to detect DNA single strand breaks in DNA of fish blood cell, J Kor Fish Soc 2003; 36: 346-351 https://doi.org/10.5657/kfas.2003.36.4.346
  13. Kirby MF, Smith AJ, Rooke J, Neall P, Scott AP and Katsiadaki I. Ethoxyresorufin O-deethylase (EROD) and vitellogenin (VTG) in flounder (Platichthys flesus): System interaction, crosstalk and implications for monitoring, Acuatic toxicology 2007; 81: 233-244 https://doi.org/10.1016/j.aquatox.2006.12.004
  14. Lemaire G, Lemaire P and Pulsford AL. Effects of cadmium and benzo[a]pyrene on the immune system, gill ATPase and EROD activity of European sea bass Dicentrarchus labrax, Aquat Toxicol 1995; 31: 297-313 https://doi.org/10.1016/0166-445X(94)00073-Y
  15. Mitchelmore CL, Birmelin C, Livingstone DR and Chipman JK. Detection of DNA strand breaks in isolated mussel (Mytilus edulis L.) digestive gland cells using the 'comet assay', Ecotoxicol Safety 1998; 41: 51-58 https://doi.org/10.1006/eesa.1998.1666
  16. Nicolas JM. Vitellogenesis in fish and the effects of polycyclic aromatic hydrocarbon contaminants, Acuatic toxicology 1999; 45: 77-90 https://doi.org/10.1016/S0166-445X(98)00095-2
  17. Padros J, Pelletier E, Reader S and Denizeau F. Mutual in vivo interactions between benzo[a]pyrene and tributyltin in brook trout (Salvelinus fontinalis), Environ Toxicol Chem 2000; 19: 1019-1027 https://doi.org/10.1897/1551-5028(2000)019<1019:MIVIBB>2.3.CO;2
  18. Pan LQ, Ren J and Liu J. Responses of antioxidant systems and LPO level to benzo(a)pyrene and benzo(k)fluoranthene in the haemolymph of the scallop Chlamys ferrari, Environmental Pollution 2006; 141: 443-451 https://doi.org/10.1016/j.envpol.2005.08.069
  19. Peakall DW and Walker CH. The role of biomarkers in environmental assessment, Ecotoxicology 1994; 3: 173-179 https://doi.org/10.1007/BF00117082
  20. Rotchell JM, Bird DJ and Newton LC. Seasonal variation in ethoxyresorufin O-deethylase (EROD) activity in European eels Anguilla anguilla and flounders Pleuronectes flesus from the Severn estuary and Bristol Channel. Mar Ecol Prog 1999; 190: 263-270 https://doi.org/10.3354/meps190263
  21. Seo JW, Kim WK and Lee SK. Combination effect of bisphenol A and nonylphenol to Japanese medaka (Oryzias latipes), The Korean Society of Environmental Toxicology 2007; 22: 203-209 https://doi.org/10.1002/tox.20257
  22. Shailaja MS and D'Silva C. Evaluation of impact of PAH on a tropical fish Oreochromis moosambicus using multiple biomarkers, Chemosphere 2003; 53: 835-841 https://doi.org/10.1016/S0045-6535(03)00667-2
  23. Shugart LR. Quantitation of chemically induced damage to DNA of aquatic organisms by alkaline unwinding assay, aquatic Toxicology 1998; 1: 43-52
  24. Stegeman JJ and Lech JJ. Cytochrome P450 monooxygenase systems in aquatic species: carcinogen metabolism and biomarkers for carcinogen and pollutant exposure, Environ Health Perspect 1991; 90: 101-109 https://doi.org/10.2307/3430851
  25. Strmac M and Braunbeck T. Isolated hepatocytes of rainbow trout (Oncorhynchus mykiss) as a tool to discriminate between differently contaminated small river system, Toxicol In Vitro 2000; 14: 361-377 https://doi.org/10.1016/S0887-2333(00)00031-X
  26. Tintos A, Gesto M, Alvarez R, Míguez JM and Soengas JL. Interactive effects of naphthalene treatment and the onset of vitellogenesis on energy metabolism in liver and gonad, and plasma steroid hormones of rainbow trout Oncorhynchus mykiss, Comp Biochem Physiol C Toxicol Pharmacol 2006; 144:155-165 https://doi.org/10.1016/j.cbpc.2006.07.009
  27. Van Schanche A, Boon JP, Aardoom Y, Van Leest A, Van Schooten FJ, Maas L, Van den berg M and Everaarts JM. Effect of a dioxin-like PCB (CB 126) on the biotransformation and genotoxicity of benzo[a]pyrene in the marine flatfish dab (Limanda limanda), Aquat Toxicol 2000; 50: 403-415 https://doi.org/10.1016/S0166-445X(00)00086-2
  28. Wolkers J, Jorgensen EH, Nijmeijer SM, and Witkamp RF. Time-dependent induction of two distinct hepatic cytochrome P4501A catalytic activities at low temperatures in Arctic charr (Salvelinus alpinus) after oral exposure to benzo(a)pyrene, Aquat Toxicol 1996; 35: 127-138 https://doi.org/10.1016/0166-445X(96)00005-7
  29. Yamada K, Suzuki T, Kohra A, Hayashi M, Hakura A, Muzutani T and Saeki K. Effect of 10-aza-substitution on benzo(a)pyrene mutagenicity in vivo and in vitro, Mutation Research 2002; 521: 187-200 https://doi.org/10.1016/S1383-5718(02)00240-1