• Title/Summary/Keyword: Acetyl-CoA Carboxylase Gene

Search Result 40, Processing Time 0.023 seconds

Identification and Functional Analysis of SEDL-binding and Homologue Proteins by Immobilized GST Fusion and Motif Based Methods

  • Hong, Ji-Man;Jeong, Mi-Suk;Kim, Jae-Ho;Kim, Boog-il;Holbrook, Stephen R.;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.381-388
    • /
    • 2008
  • An X-linked skeletal disorder, SEDT (spondyloepiphyseal dysplasia tarda) is a genetic disease characterized by a disproportionately short trunk and short stature caused by mutations in the SEDL gene. This gene is evolutionarily conserved from yeast to human. The yeast SEDL protein ortholog, Trs20p, has been isolated as a member of a large multi-protein complex called the transport protein particle (TRAPP), which is involved in endoplasmic reticulum (ER)-to-Golgi transport. The interaction between SEDL and partner proteins is important in order to understand the molecular mechanism of SEDL functions. We isolated several SEDL-binding proteins derived from rat cells by an immobilized GST-fusion method. Furthermore, the SEDL-homologue proteins were identified using motif based methods. Common motifs between SEDL-binding proteins and SEDL-homologue proteins were classified into seven types and 78 common motifs were revealed. Sequence similarities were contracted to seven types using phylogenetic trees. In general, types I-III and VI were classified as having the function of acetyl-CoA carboxylase, glycogen phosphorylase, isocitrate dehydrogenase, and enolase, respectively, and type IV was found to be functionally related to the GST protein. Types V and VII were found to contribute to TRAPP vesicle trafficking.

Effects of Fattening Period on Growth Performance, Carcass Characteristics and Lipogenic Gene Expression in Hanwoo Steers

  • Kwon, Eung Gi;Park, Byung Ki;Kim, Hyeong Cheol;Cho, Young Moo;Kim, Tae Il;Chang, Sun Sik;Oh, Young Kyoon;Kim, Nam Kuk;Kim, Jun Ho;Kim, Young Jun;Kim, Eun-Jib;Im, Seok Ki;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1654-1660
    • /
    • 2009
  • This study was conducted to investigate the effects of different fattening periods i.e. 25, 27 and 29 months of age (25 mo, 27 mo and 29 mo), on feed consumption, body weight gain, carcass parameters, and lipogenic gene expression in 45 Korean native steers (Hanwoo). Daily DM intake was higher in steers on 29 mo compared with those on 25 mo or 27 mo. Daily body weight gain was higher in steers on 25 mo compared with those on 27 mo or 29 mo during fattening and overall experimental periods. Therefore, feed conversion ratio was lower in 25 mo compared with 27 mo or 29 mo during the fattening and whole experimental periods. As expected, slaughter and carcass weights were higher in the order of 29 mo>27 mo>25 mo. Carcass yield grade was relatively lower in 29 mo reflecting higher back fat thickness compared with other treatments, while carcass quality grade was not largely influenced by the treatments. By investigation with an ultra-sound scanning technique, the marbling score was significantly and numerically higher in 25 mo compared with 27 mo or 29 mo. The mRNA levels of stearoyl-CoA desaturase (SCD) gene were gradually increased in the late fattening stages (p<0.01) and mRNA of acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACL) and glucose transporter 4 (GLUT4) gene were highly expressed in 29 mo compared with 25 mo and 27 mo (p<0.05). However, gene expressions of adipocyte fatty acid binding protein 4 (FABP4) and lipoprotein lipase (LPL) were not significantly different among the treatments. Thus the present results indicated that different fattening period has no major effect on carcass characteristics, although 25 mo had a lower carcass weight compared with 27 mo or 29 mo.

Nutritional and Hormonal Induction of Fatty Liver Syndrome and Effects of Dietary Lipotropic Factors in Egg-type Male Chicks

  • Choi, Y.I.;Ahn, H.J.;Lee, B.K.;Oh, S.T.;An, B.K.;Kang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1145-1152
    • /
    • 2012
  • This experiment was conducted with male chicks to investigate the influence of hormones and nutrients on the development of fatty liver syndrome (FLS) as well as the effects of dietary lipotropic factors on hepatic fat accumulation and lipogenic enzyme gene expression. A total of two-hundred sixteen 4-wk-old Hy-Line male chicks were divided into six groups and fed an experimental diet (T1, low-energy diet with low levels of lipotropic factors; T2, high-energy diet with low levels of lipotropic factors; T3 and T5, low-energy diet with high levels of lipotropic factors; T4 and T6, high-energy diet with high levels of lipotropic factors) for six weeks. The chicks in T5 and T6 groups were treated with intramuscular injections of estradiol benzoate for three days prior to biopsy and clinical analysis of FLS. Chicks treated with estrogen had significantly greater liver weights than untreated chicks. The abdominal fat contents were increased in chicks consuming high-energy diets as compared to those consuming low-energy diets. Treatment with estrogen significantly increased the concentrations of serum cholesterol, triacylglycerol and phospholipid (p<0.05). The hepatic triacylglycerol levels were tenfold higher in the estrogen treated chicks than in the untreated chicks. There were no significant differences in malondialdehyde levels between the treatment groups. Estrogen treatment dramatically increased the levels of fatty acid synthetase, acetyl-CoA carboxylase and ApoB mRNA. The results indicated that treatment with exogenous estrogen in growing male chicks induced hepatic fat accumulation, which might be partially due to increased lipogenic enzyme gene expression.

Lower ω-6/ω-3 Polyunsaturated Fatty Acid Ratios Decrease Fat Deposition by Inhibiting Fat Synthesis in Gosling

  • Yu, Lihuai;Wang, Shunan;Ding, Luoyang;Liang, Xianghuan;Wang, Mengzhi;Dong, Li;Wang, Hongrong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1443-1450
    • /
    • 2016
  • The objective of the current study was to investigate the effects of dietary ${\omega}-6/{\omega}-3$ polyunsaturated fatty acid (PUFA) ratios on lipid metabolism in goslings. One hundred and sixty 21-day-old Yangzhou geese of similar weight were randomly divided into 4 groups. They were fed different PUFA-supplemented diets (the 4 diets had ${\omega}-6/{\omega}-3$ PUFA ratios of 12:1, 9:1, 6:1, or 3:1). The geese were slaughtered and samples of liver and muscle were collected at day 70. The activities and the gene expression of enzymes involved in lipid metabolism were measured. The results show that the activities of acetyl coenzyme A carboxylase (ACC), malic enzyme (ME), and fatty acid synthase (FAS) were lower (p<0.05), but the activities of hepatic lipase (HL) and lipoprotein lipase (LPL) were higher (p<0.05), in the liver and the muscle from the 3:1 and 6:1 groups compared with those in the 9:1 and 12:1 groups. Expression of the genes for FAS (p<0.01), ME (p<0.01) and ACC (p<0.05) were higher in the muscle of groups fed diets with higher ${\omega}-6/{\omega}-3$ PUFA ratios. Additionally, in situ hybridization tests showed that the expression intensities of the high density lipoprotein (HDL-R) gene in the 12:1 and 9:1 groups were significantly lower (p<0.01) than that of the 3:1 group in the muscle of goslings. In conclusion, diets containing lower ${\omega}-6/{\omega}-3$ PUFA ratios (3:1 or 6:1) could decrease fat deposition by inhibiting fat synthesis in goslings.

Effects of prolonged photoperiod on growth performance, serum lipids and meat quality of Jinjiang cattle in winter

  • Yu, Yan;Qiu, Jingyun;Cao, Jincheng;Guo, Yingying;Bai, Hui;Wei, Shengjuan;Yan, Peishi
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1569-1578
    • /
    • 2021
  • Objective: This study was conducted to investigate the potential effects of prolonged photoperiod on the serum lipids, carcass traits, and meat quality of Jinjiang cattle during winter. Methods: Thirty-four Jinjiang bulls aged between 14 and 16 months were randomly assigned to two groups that were alternatively subjected to either natural daylight +4 h supplemental light (long photoperiod, LP) or natural daylight (natural photoperiod, NP) for 96 days. The potential effects on the levels of serum lipids, carcass traits, meat quality, and genes regulating lipid metabolism in the intramuscular fat (IMF) of the cattle were evaluated. Results: Jinjiang cattle kept under LP showed significant increase in both dry matter intake and backfat thickness. the serum glucose and the plasma leptin levels were significantly reduced, while that of melatonin and insulin were observed to be increased. The crude fat contents of biceps femoris muscle and longissimus dorsi muscle were higher in LP than in NP group. In longissimus dorsi muscle, the proportions of C17:0 and C18:0 were significantly higher but that of the C16:1 was found to be significantly lower in LP group. The relative mRNA expressions in IMF of longissimus dorsi muscle, the lipid synthesis genes (proliferator-activated receptor gamma, fatty acid-binding protein) and the fatty acid synthesis genes (acetyl-coa carboxylase, fatty acid synthetase, 1-acylglycerol-3-phosphate acyltransferase) were significantly up-regulated in LP group (p<0.05); whereas the hormone-sensitive lipase and stearoyl-CoA desaturase 1 were significantly down-regulated in LP than in NP group. Conclusion: Prolonged photoperiod significantly altered the growth performance, hormonal levels, gene expression and fat deposition in Jinjiang cattle. It suggested that the LP improved the fat deposition by regulating the levels of different hormones and genes related to lipid metabolism, thereby improving the fattening of Jinjiang cattle during winter.

Ginseng Leaf Extract Prevents High Fat Diet-Induced Hyperglycemia and Hyperlipidemia through AMPK Activation

  • Yuan, Hai-Dan;Kim, Sung-Jip;Quan, Hai-Yan;Huang, Bo;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • This study evaluated the protective effects of ginseng leaf extract (GLE) against high fat-diet-induced hyperglycemia and hyperlipidemia, and explored the potential mechanism underlying these effects in C57BL/6J mice. The mice were randomly divided into four groups: normal control, high fat diet control (HFD), GLE-treated at 250 mg/kg, and GLE-treated at 500 mg/kg. To induce hyperglycemic and hyperlipidemic states, mice were fed a high fat diet for 6 weeks and then administered GLE once daily for 8 weeks. At the end of the treatment, we examined the effects of GLE on plasma glucose, lipid levels, and the expression of genes related to lipogenesis, lipolysis, and gluconeogenesis. Both GLE groups lowered levels of plasma glucose, insulin, triglycerides, total cholesterol, and non-esterified fatty acids when compared to those in HFD group. Histological analysis revealed significantly fewer lipid droplets in the livers of GLE-treated mice compared with HFD mice. To elucidate the mechanism, Western blots and RT-PCR were performed using liver tissue. Compared with HFD mice, GLE-treated mice showed higher levels of phosphorylation of AMP-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase, but no differences in the expression of lipogenic genes such as sterol regulatory element-binding protein 1a, fatty acid synthase, sterol-CoA desaturase 1 and glycerol-3-phosphate acyltransferase. However, the expression levels of lipolysis and fatty acid uptake genes such as peroxisome proliferator-activated receptor-$\alpha$ and CD36 were increased. In addition, phosphoenolpyruvate carboxykinase gene expression was decreased. These results suggest that GLE ameliorates hyperglycemia and hyperlipidemia by inhibiting gluconeogenesis and stimulating lipolysis, respectively, via AMPK activation.

Dudleya brittonii extract promotes survival rate and M2-like metabolic change in porcine 3D4/31 alveolar macrophages

  • Kim, Hyungkuen;Jeon, Eek Hyung;Park, Byung-Chul;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1789-1800
    • /
    • 2019
  • Objective: Although alveolar macrophages play a key role in the respiratory immunity of livestock, studies on the mechanism of differentiation and survival of alveolar macrophages are lacking. Therefore, we undertook to investigate changes in the lipid metabolism and survival rate, using 3D4/31 macrophages and Dudleya brittonii which has been used as a traditional asthma treatment. Methods: 3D4/31 macrophages were used as the in vitro porcine alveolar macrophages model. The cells were activated by exposure to phorbol 12-myristate 13-acetate (PMA). Dudleya brittonii extraction was performed with distilled water. For evaluating the cell survival rate, we performed the water-soluble tetrazolium salt cell viability assay and growth curve analysis. To confirm cell death, cell cycle and intracellular reactive oxygen species (ROS) levels were measured using flow cytometric analysis by applying fluorescence dye dichlorofluorescein diacetate and propidium iodide. Furthermore, we also evaluated cellular lipid accumulation with oil red O staining, and fatty acid synthesis related genes expression levels using quantitative polymerase chain reaction (qPCR) with SYBR green dye. Glycolysis, fatty acid oxidation, and tricarboxylic acid (TCA) cycle related gene expression levels were measured using qPCR after exposure to Dudleya brittonii extract (DB) for 12 h. Results: The ROS production and cell death were induced by PMA treatment, and exposure to DB reduced the PMA induced downregulation of cell survival. The PMA and DB treatments upregulated the lipid accumulation, with corresponding increase in the acetyl-CoA carboxylase alpha, fatty acid synthase mRNA expressions. DB-PMA co-treatment reduced the glycolysis genes expression, but increased the expressions of fatty acid oxidation and TCA cycle genes. Conclusion: This study provides new insights and directions for further research relating to the immunity of porcine respiratory system, by employing a model based on alveolar macrophages and natural materials.

Apolipoprotein H: a novel regulator of fat accumulation in duck myoblasts

  • Ziyi, Pan;Guoqing, Du;Guoyu, Li;Dongsheng, Wu;Xingyong, Chen;Zhaoyu, Geng
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1199-1214
    • /
    • 2022
  • Apolipoprotein H (APOH) primarily engages in fat metabolism and inflammatory disease response. This study aimed to investigate the effects of APOH on fat synthesis in duck myoblasts (CS2s) by APOH overexpression and knockdown. CS2s overexpressing APOH showed enhanced triglyceride (TG) and cholesterol (CHOL) contents and elevated the mRNA and protein expression of AKT serine/threonine kinase 1 (AKT1), ELOVL fatty acid elongase 6 (ELOVL6), and acetyl-CoA carboxylase 1 (ACC1) while reducing the expression of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK), peroxisome proliferator activated receptor gamma (PPARG), acyl-CoA synthetase long chain family member 1 (ACSL1), and lipoprotein lipase (LPL). The results showed that knockdown of APOH in CS2s reduced the content of TG and CHOL, reduced the expression of ACC1, ELOVL6, and AKT1, and increased the gene and protein expression of PPARG, LPL, ACSL1, and AMPK. Our results showed that APOH affected lipid deposition in myoblasts by inhibiting fatty acid beta-oxidation and promoting fatty acid biosynthesis by regulating the expression of the AKT/AMPK pathway. This study provides the necessary basic information for the role of APOH in fat accumulation in duck myoblasts for the first time and enables researchers to study the genes related to fat deposition in meat ducks in a new direction.

The effects of Brassica juncea L. leaf extract on obesity and lipid profiles of rats fed a high-fat/high-cholesterol diet

  • Lee, Jae-Joon;Kim, Hyun A;Lee, Joomin
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.298-306
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Obesity is a global health problem of significant importance which increases mortality. In place of anti-obesity drugs, natural products are being developed as alternative therapeutic materials. In this study, we investigated the effect of Brassica juncea L. leaf extract (BLE) on fat deposition and lipid profiles in high-fat, high-cholesterol diet (HFC)-induced obese rats. MATERIALS/METHODS: Male Sprague-Dawley rats were divided into four groups (n = 8 per group) according to diet: normal diet group (ND), high-fat/high-cholesterol diet group (HFC), HFC with 3% BLE diet group (HFC-A1), and HFC with 5% BLE diet group (HFC-A2). Each group was fed for 6 weeks. Rat body and adipose tissue weights, serum biochemical parameters, and tissue lipid contents were determined. The expression levels of mRNA and proteins involved in lipid and cholesterol metabolism were determined by reverse transcription polymerase chain reaction and western blot analysis, respectively. RESULTS: The HFC-A2 group showed significantly lower body weight gain and food efficiency ratio than the HFC group. BLE supplementation caused mesenteric, epididymal, and total adipose tissue weights to decrease. The serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol were significantly reduced, and high-density lipoprotein cholesterol was significantly increased in rats fed BLE. These results were related to lower glucose-6-phosphate dehydrogenase, acetyl-coA carboxylase, and fatty acid synthase mRNA expression, and to higher expression of the cholesterol $7{\alpha}$-hydroxylase and low density lipoprotein-receptor, as well as increased protein levels of peroxisome proliferator-activated receptor ${\alpha}$. Histological analysis of the liver revealed decreased lipid droplets in HFC rats treated with BLE. CONCLUSIONS: Supplementation of HFC with 3% or 5% BLE inhibited body fat accumulation, improved lipid profiles, and modulated lipogenesis- and cholesterol metabolism-related gene and protein expression.

Anti-diabetic Effect and Mechanism of Korean Red Ginseng in C57BL/KsJ db/db Mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.187-193
    • /
    • 2008
  • The present study was designed to investigate the anti-diabetic effect and mechanism of Korean red ginseng in C57BL/KsJ db/db mice. The db/db mice were divided into three groups: diabetic control group (DC), Korean red ginseng group (KRG, 100 mg/kg) and metformin group (MET, 300 mg/kg), and treated with drugs once per day for 10 weeks. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in KRG-, 67.7% in MET-treated group. With decreased plasma glucose and insulin levels, the insulin resistance index of the KRG-treated group was reduced by 27.6% compared to the DC group. The HbA1c levels in KRG and MET-treated groups were also decreased by 11.0% and 18.9% compared to that of DC group, respectively. Plasma triglyceride and non-esterified fatty acid levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the KRG-treated group compared to those in DC group. Histological analyses of the liver and fat tissue of mice treated with KRG revealed significantly decreased number of lipid droplets and decreased size of adipocytes compared to the DC group. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin contents, but decreased glucagon production. To elucidate action mechanism of KRG, effects on AMP-activated protein kinase (AMPK) and its downstream target proteins responsible for fatty acid oxidation and gluconeogenesis were explored in the liver. KRG activated AMPK and acetyl-coA carboxylase (ACC) phosphorylations, resulting in stimulation of fatty acid oxidation. KRG also caused to down regulation of SREBP1a and its target gene expressions such as FAS, SCD1 and GPAT. In summary, our results suggest that KRG exerted the anti-diabetic effect through AMPK activation in the liver of db/db mice.