• 제목/요약/키워드: Acellular dermal matrix

검색결과 79건 처리시간 0.02초

가토의 귀에서 무세포성 진피 기질의 이식 방법에 따른 치유 양상 (HEALING PATTERNS OF THE ACELLULAR DERMAL MATRIX DEPEND ON GRAFT METHOD IN THE RABBIT EARS)

  • 류재영;유선열
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제31권3호
    • /
    • pp.216-221
    • /
    • 2009
  • Purpose: The retention of the basement membrane complex, which was the unique feature of the acellular dermal matrix ($AlloDerm^{(R)}$), plays an important role in the normal process of wound healing. The present study was aimed to compare the healing of the acellular dermal matrix according to the graft method in the rabbit ear. Materials and methods: Six mature rabbits weighing about 3.0 kg were used, $10\;{\times}\;5\;mm$ sized subcutaneous pockets were created between the ear skin and the underlying perichondrium. In the control group, the acellular dermal matrix was grafted with the basement membrane facing toward the perichondrium. On the contrary, the acellular dermal matrix was grafted with the basement membrane facing toward the skin side in the experimental group I. In the experimental group II, the acellular dermal matrix was grafted like rolled configuration with basement membrane side in. The grafted site was picked at 3, 7, and 21 days after the graft. Serial sections were processed by H-E stain and examined under light microscopy to assess the healing patterns. Results: There was no distinct volume loss in the gross examination, but resorption was observed from the edge of the acellular dermal matrix in the histological examination. The space of resorption was replaced by the newly formed fibrous tissues and vessels. The inflammatory cells were more increased at 7 days after the graft than the early days. However, inflammation was decreased at 21 days after the graft. Regardless of the graft direction, no differences were observed between the control and the experimental group I in the healing patterns. Conclusion: These results suggest that the acellular dermal matrix can be used simply and effectively without regard to the graft direction as a substitute of autogenous material for repairing soft tissue defect.

Scaffold상에 식립한 사람치주인대섬유모세포를 통한 치주조직공학 (Periodontal tissue engineering by hPDLF seeding on scaffold)

  • 김성신;김병옥;박주철;장현선
    • Journal of Periodontal and Implant Science
    • /
    • 제36권3호
    • /
    • pp.757-765
    • /
    • 2006
  • Human periodontal ligament fibroblasts (hPDLF) are very important for curing the periodontal tissue because they can be differentiated into various cells. A tissue engineering approach using a cell-scaffold is essential for comprehending today's periodontal tissue regeneration procedure. This study examined the possibility of using an acellular dermal matrix as a scaffold for human periodontalligament fibroblast (hPDLF). The hPDLF was isolated from the middle third of the root of periodontally healthy teeth extracted for orthodontic reasons. The cells were cultured in a medium containing Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum at $37^{\circ}C$ in humidified air with 5% $CO_2$. The acellular dermal matrix(ADM) was provided by the US tissue banks(USA). Second passage cells were used in this study. The hPDLF cells were cultured with the acellular dermal matrix for 2 days, and the dermal matrix cultured by the hPDLF was transferred to a new petri dish and used as the experimental group. The control group was cultured without the acellular dermal matrix, The control and experimental cells were cultured for six weeks. The hPDLF cultured on the acellular dermal matrix was observed by Transmission Electron microscopy (TEM). Electron micrography shows that the hPDLF was proliferated on the acellular dermal matrix. This study suggests that the acellular dermal matrix can be used as a scaffold for hPDLF.

미니돼지에서 Acellular dermal matrix에 배양된 치주인대섬유모세포을 이용한 자가치아이식술: 치주인대로써의 잠재력에 대한 조직학적 평가 (Autotransplantation using the acellular dermal matrix seeded by periodontal ligament fibroblasts in minipig: histological evaluation as potential periodontal ligament substitutes)

  • 유상준;김병욱;박주철;장현선
    • Journal of Periodontal and Implant Science
    • /
    • 제37권1호
    • /
    • pp.53-64
    • /
    • 2007
  • The aim of this study was to examine the possibility of periodontal ligament regeneration when autotransplantation was used by the periodontal ligament fibroblasts cultured on the acellular dermal matrix in teeth without a periodontal ligament. One minipig was used in this study. The mandibular and maxillary permanent incisors were ex-tracted for the culture of the periodontal ligament cells. The roots of the unextracted teeth were classified into a positive control group, in which the normal periodontal ligament was preserved. The roots of the extracted teeth were divided into the following two groups: The negative control group, in which the periodontal ligament had been removed and the acellular dermal matrix was not applied; and an experimental group, in which the periodontal ligament had been removed and periodontal ligament fibroblast cultured on an acellular dermal matrix was applied. The prepared teeth were transplanted, and completely submerged using physical barrier membranes. The animal was sacrificed 4 weeks after the autotransplant. The transplanted teeth were examined histologically. In this study, the periodontal ligament was normal in the positive control group, and ankylosis was discovered on the denuded root surface in the negative control group. Periodontal ligament-like connective tissue was found adjacent to the denuded root and the new cementum-like layer of hard tissue was formed in the experimental group. These results suggest that the periodontal ligament fibroblasts cultured on the acellular dermal matrix may play a role in regenerating the periodontal ligament-like tissue with new cememtum-like tissue formation.

무세포 진피 기질을 활용한 재건 수술에 대한 문헌적 고찰 (Use of Acellular Dermal Matrix in Reconstructive Surgery: A Review)

  • 박지원;채수욱;윤병민
    • Journal of Medicine and Life Science
    • /
    • 제18권3호
    • /
    • pp.56-60
    • /
    • 2021
  • In recent decades, tissue engineering advances have led to more skin substitutes becoming available. Acellular dermal matrix, initially developed for use in the treatment of full-thickness burns, is made by removing the cellular components from the dermis collected from donated bodies or animals. This class of scaffold is used to replace skin and soft tissue deficiencies in a variety of fields, including breast reconstruction, abdominal wall reconstruction, and burn treatment. Herein, we provide a detailed review of the clinical applications of acellular dermal matrix.

Successful management of absent sternum in an infant using porcine acellular dermal matrix

  • Semlacher, Roy Alfred;Nuri, Muhammand A.K.
    • Archives of Plastic Surgery
    • /
    • 제46권5호
    • /
    • pp.470-474
    • /
    • 2019
  • Congenital absent sternum is a rare birth defect that requires early intervention for optimal long-term outcomes. Descriptions of the repair of absent sternum are limited to case reports, and no preferred method for management has been described. Herein, we describe the use of porcine acellular dermal matrix to reconstruct the sternum of an infant with sternal infection following attempted repair using synthetic mesh. The patient was a full-term male with trisomy 21, agenesis of corpus callosum, ventricular septal defect, patent ductus arteriosus, right-sided aortic arch, and congenital absence of sternum with no sternal bars. Following removal of the infected synthetic mesh, negative pressure wound therapy with instillation was used to manage the open wound and provide direct antibiotic therapy. When blood C-reactive protein levels declined to ${\leq}2mg/L$, the sternum was reconstructed using porcine acellular dermal matrix. At 21 months postoperative, the patient demonstrated no respiratory issues. Physical examination and computed tomography imaging identified good approximation of the clavicular heads and sternal cleft and forward curvature of the ribs. This case illustrates the benefits of negative pressure wound therapy and acellular dermal matrix for the reconstruction of absent sternum in the context of infected sternal surgical site previously repaired with synthetic mesh.

Acellular dermal matrix and bone cement sandwich technique for chest wall reconstruction

  • Heo, Chan Yeong;Kang, Byungkwon;Jeong, Jae Hoon;Kim, Kwhanmien;Myung, Yujin
    • Archives of Plastic Surgery
    • /
    • 제49권1호
    • /
    • pp.25-28
    • /
    • 2022
  • The authors performed rigid reconstruction using the sandwich technique for full-thickness chest wall defects by using two layers of acellular dermal matrix and bone cement. We assessed six patients who underwent chest wall reconstruction. Reconstruction was performed by sandwiching bone cement between two layers of acellular dermal matrix. In all patients, there was no defect of the overlying soft tissue, and primary closure was performed for external wounds. The average follow-up period was 4 years (range, 2-8 years). No major complications were noted. The sandwich technique can serve as an efficient and safe option for chest wall reconstruction.

인간 무세포성 진피기질 위에 배양한 가토 구강각화상피세포의 중충화와 기저막 형성에 관한 연구 (FORMATION OF BASEMENT MEMBRANE AND STRATIFICATION OF RABBIT ORAL KERATINOCYTES CULTURED ON HUMAN ACELLULAR DERMAL MATRIX)

  • 김용덕;안강민;염학렬;정헌종;김성민;장정원;성미애;박희정;황순정;이종호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권6호
    • /
    • pp.510-522
    • /
    • 2005
  • To assess the clinical applicability of bio-artificial mucosa which was made with autologous oral keratinocytes and human acellular dermal matrix, the formation of basement membrane and stratification of oral keratinocytes were evaluated. Six New Zealand white rabbits (around 2kg in weight) were anesthetized and its buccal mucosa was harvested (1.0 $\times$ 0.5cm size). Oral keratinicytes were extracted and cultured primarily with the feeder layer of pretreated NIH J2 3T3 fibroblast. These confluent cells were innoculated on the human acellular dermal matrix and cultured in multiple layer by air-rafting method. After 3, 5, 7, 10, 14 days of culture, each cultured bio-artificial mucosa was investigated the number of epthelial layer of by H&E stain and toluidine blue stain. The immuhohistochemical methods were used to evaluate the cell division capacity, the formation of basement membrane, and it's property of specific cells (PCNA, cytokeratin 14, laminin). Transmission electromicroscopy was used for the attachment between cells and matrix with the number of hemidesmosome. In result, the numbers of layer of stratified growth of oral keratinocyte cultured on the human acellular dermal matrix and the number of hemidesomal attachment between epithelial cells and human acellular dermal matrix were similar to the layers of normal oral mucosa after 10 days of culture. The cell division rate, basement membrane formation and proliferation rate increased as culture period increased. With these results, bio-artificial mucosa with autologous oral epithelial cells cultured on the acellular dermal matrix had clinically adaptable properties after 10 days' culture and this new bio-artificial mucosa model with relatively short culture time can be expected clinical applicability.

성견에서 ADM(acellular dermal matrix)의 치근피개 효과에 관한 실험적 연구 (Experimental Study on the Acellular Dermal Matrix Graft for the Root Coverage in Dog)

  • 조민영;이승호;한금아;이준영;전혜란;강나라;김명래
    • Journal of Periodontal and Implant Science
    • /
    • 제36권1호
    • /
    • pp.239-251
    • /
    • 2006
  • 결합조직이식을 이용한 치근피개 술식에 많은 관심이 집중되고 있다. 최근에는 acellular dermal matrix가 자가 결합조직 이식편의 대체물로써 소개되었다. 본 실험의 목적은 치근피개를 위해 acellular dermal matrix을 사용시, 그 임상 효과 빚 조직 치유 양상을 평가하고, 이를 자가 결합조직 이삭시의 결과와 비교하기 위함이다. 3마리의 성견에 인위적인 치은 퇴축부 형성을 위해서, 상악 좌우견치의 협측에서 각화치은을 모두 제거하고, 법랑백악경계부로부터 12mm 정도 치조골을 삭제한 후에 판막을 봉합하였다. 그 후 35일을 치유 기간으로 부여하였다. 총 6 부위의 결손부가 실험에 포함되었고, 각각 3 부위씩이 대조군과 실험군으로 분류되었다. 실험군에서는 acellular dermal matrix 이식과 치관측 변위 판막을 시행하였고, 대조군에서는 치은 퇴축부위에 자가 결합조직 이식과 치관측 변위 판막을 시행하였다. 치주낭 깊이, 임상적 부착 수준, 치은 퇴축 높이, 각화조직 높이 등을 인위적 결손부 형성전, 치은 피개술 시행 직전, 피개술 시행후 4주 경과시에 각각 측정하였다. 술후 4주시에, 상악 좌우 견치 부위에서 시편을 얻어 조직학적으로 관찰하고 Wilcoxon signed rank test 와 Mann-Whitney U test으로 통계처리하였다. 임상결과 관찰시, 대조군과 실험군 모두에서, 술전과 비교시 치은 퇴축 감소와 각화조직의 증가, 임상 부착수준의 개선이 나타났다.(p ( 0.05) 평균 치근 피개율은 실험군에서 61.33(5.67%(n=3), 대조군에서 55.67(5.67%(n=3) 이었고, 대조군과 실험군에서 임상결과에서는 통계학적으로 유의성 있는 차이는 없었다.(p ( 0.05). 조직학상으로는, 두 군 모두에서 이식편이 수여부에 잘 융화되어 있었고 비슷한 치유 양상을 보였다. 이상의 실험결과에 의하면, Acellular dermal matrix은 치근피개술 시행시에 결합조직 이식편의 대용품으로 사용할 수 있고 비슷한 피개 결과를 얻을수 있었다.

여러 가지 가교제가 인체 무세포진피의 안정성에 미치는 영향 (Effects of Cross-Linking Agents on the Stability of Human Acellular Dermal Matrix)

  • 강낙헌;윤영묵;우종설;안재형;김진영
    • Archives of Plastic Surgery
    • /
    • 제35권3호
    • /
    • pp.248-254
    • /
    • 2008
  • Purpose: Human acellular dermal matrix(ADM) is widely used in the treatment of congenital anomalies and soft tissue deficiencies. But it is rapidly degraded in the body and does not provide satisfactory results. There is a need to improve collagen fiber stability through various methods and ultimately regulate the speed of degradation. Methods: The ADMs were added with various cross-linking agents called glutaraldehyde, dimethyl 3,3'-dithiobispropionimidate to produce cross-linked acellular dermal matrices. 1,4-butanediol diglycidyl ether solution was applied with a pH of 4.5 and 9.0, respectively. The stability of cross-linked dermal matrix was observed by measuring the shrinkage temperature and the degradation rates. The cross- and non-cross linked dermis were placed in the rat abdomen and obtained after 8, 12 and 16 weeks. Results: The shrinkage temperature significantly increased and the degradation rate significantly decreased, compared to the control(p<0.05). All of cross-linked dermises were observed grossly in 16 weeks, but most of non-cross linked dermis were absorbed in 8 weeks. Histologically, the control group ADM was found to have been infiltrated with fibroblasts and most of dermal stroma were transformed into the host collagen fibers. However, infiltration of fibroblasts in the experiment was insignificant and the original collagen structure was intact. Conclusion: Collagen cross-linking increases the structural stability and decreases degradation of acellular dermis. Therefore, decrease in body absorption and increase in duration can be expected.