• Title/Summary/Keyword: Accurate placement

Search Result 124, Processing Time 0.024 seconds

Accurate Placement of Parieto-occipital Ventricular Catheter Using CT Parameters (CT 지표를 이용한 두정-후두부 뇌실 도관의 정확한 삽입)

  • Min, Hyung-Sik;Song, Jun-Hyeok
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.7
    • /
    • pp.886-890
    • /
    • 2000
  • Objective : placement of ventricular catheter is important to achieve long-term patency of the shunt system. We describe a method of calculating the insertion site, trajectory, and the length of the ventricular catheter using CT parameters in shunt surgery. Patients and Methods : These can be rapidly obtained using a caliper from a scout cut and two axial scans at lateral ventricular and upper 3rd ventricular level. To compare this technique with traditional one, we analyzed 40 consecutive patients who underwent shunt surgery. Results : Of 20 patients undergoing ventriculoperitoneal shunt insertion using this technique, none had poor location of the proximal catheter. In the counterpart, 9 patients had poor location(p=0.001). The number of patients who required revision surgery were also lower in the group using this technique, but it was not statistically significant (4 versus 2, p=0.422). Mean follow-up period was shorter in this technique group. Conclusion : This technique provides an accurate placement of the proximal catheter without special instrument or additional expenses.

  • PDF

Accuracy of Thoracolumbar Spine K-Wire Placement in Toy, Small and Medium Breed Dogs: Novice Surgeons with 3D Printed Patient-Specific Guide versus an Experienced Surgeon with Freehand Techniques

  • Hwa-Joeng Shin;Hae-Beom Lee;Yoon-Ho Roh
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.294-301
    • /
    • 2022
  • Three-dimensional (3D) printing technique has been widely used for accurate screw and pin placement in orthopedic surgery and neurosurgery. However, there are few reports comparing the accuracy between the patient-specific guides and freehand Kirschner wire (K-wire) placement in toy, small and medium breed dogs. This study aimed to assess the accuracy of 3D printed patient-specific guides (PSGs) in pin insertion in the thoracolumbar vertebrae of toy breed dogs and compare the outcomes between novice and experienced surgeons. The experiment was conducted on the thoracolumbar vertebrae of 21 euthanized toy breed dogs (median weight, 5.95 kg). The optimal insertion angle placement was determined and patient-specific guides for K-wire insertion were designed and 3D printed using computed tomography (CT) and a 3D computer-aided design program of three vertebrae (Thoracic 12-Lumbar 1). K-wire tracts were made by experienced and novice surgeons and compared to assess the accuracy based on postoperative CT. Based on postoperative CT, in the experienced group, 61 out of 63 pins (96.8%) were fully contained inside the vertebral body and lamina, whereas two pins (3.2%) had perforated the vertebral canal (grade 3, 2-4 mm breach). However, all the pins in the novice group were fully contained. The use of 3D printed PSGs for pin insertion in the thoracolumbar region is an accurate and safe alternative to freehand screw placement by novice surgeons in toy, small and medium breed dogs. Operations with 3D printed PSGs allow novice surgeons to achieve better or similar outcomes in accurate placement of pin/screws in vertebrae.

Clinical consideration of Immediate implant placement (발치 후 즉시 식립을 위한 임상적 고찰)

  • Oh, Sang-Yoon
    • The Journal of the Korean dental association
    • /
    • v.55 no.10
    • /
    • pp.716-724
    • /
    • 2017
  • Past literatures stressed that when a gap occurred between smooth surface implant and alveolar bone, osseointegration was unsatisfactory at histologic examination regardless of clinical findings. Accordingly, standard surgical approach in the early days of implant surgery was to place the implant after all gap was healed. However, Botticelli et al.(2004) reported high degree of osseointegration at the gap with SLA surface implant. From then, the era of immediate implantation has begun because SLA surface implant make gap healing possible. There are two main disadvantages of immediate implantation: (1) surgical technique is sensitive for primary implant stability, (2) Implant placement at the accurate position that predicts external change of extraction wound is required. Immediate implantation has outstanding advantages in all perspectives except for the above-mentioned disadvantages. Therefore, it would be unwise to abandon the option of immediate implantation simply due to surgical difficulties. The purpose of this paper is to describe the necessity of immediate implantation and to present scientific evidence for immediate implantation and accurate implant position by literature review.

  • PDF

Realistic Analysis Method for Continuously Block-Placed Mass Concrete Structures Considering Block Size and Sequence of Concrete Placement (매스 콘크리트 구조물의 연속 분할타설시 타설블록의 크기 및 타설순서를 고려한 합리적인 수화열 해석)

  • 오병환;전세진;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.59-67
    • /
    • 1999
  • The mass concrete structures are generally constructed in an incremental manner by deviding the whole structures by a series of many blocks. The temperature and stress distributions of any specific block are continuously affected by the blocks placed before and after the specific block. For an accurate analysis of mass concrete structures, the sequence of all the blocks must be accordingly considered including the change of material properties with time for those blocks considered. The purpose of this study is to propose a realistic analysis method which can take into account not only the influence of the sequence, time interval and size of concrete block placement on the temperatures and stresses, but also the change of material properties with time. It is seen from this study that the conventional simplified analysis, which neglects material property changes of some blocks with time and does not consider the effect of adjacent blocks in the analysis, may yield large discrepancies in the temperature and stress distributions of mass concrete structures. This study gives a method to choose the minimum number of blocks required to obtain reasonably accurate results in analysis. The study provides a realistic method which can determine the appropriate size and time interval of block placement, and can be efficiently used in the design and construction of mass concrete structures.

Multi-type, multi-sensor placement optimization for structural health monitoring of long span bridges

  • Soman, Rohan N.;Onoufrioua, Toula;Kyriakidesb, Marios A.;Votsisc, Renos A.;Chrysostomou, Christis Z.
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2014
  • The paper presents a multi-objective optimization strategy for a multi-type sensor placement for Structural Health Monitoring (SHM) of long span bridges. The problem is formulated for simultaneous placement of strain sensors and accelerometers (heterogeneous network) based on application demands for SHM system. Modal Identification (MI) and Accurate Mode Shape Expansion (AMSE) were chosen as the application demands for SHM. The optimization problem is solved through the use of integer Genetic Algorithm (GA) to maximize a common metric to ensure adequate MI and AMSE. The performance of the joint optimization problem solved by GA is compared with other established methods for homogenous sensor placement. The results indicate that the use of a multi-type sensor system can improve the quality of SHM. It has also been demonstrated that use of GA improves the overall quality of the sensor placement compared to other methods for optimization of sensor placement.

Free Hand Pedicle Screw Placement in the Thoracic Spine without Any Radiographic Guidance : Technical Note, a Cadaveric Study

  • Hyun, Seung-Jae;Kim, Yong-Jung J.;Cheh, Gene;Yoon, Seung-Hwan;Rhim, Seung-Chul
    • Journal of Korean Neurosurgical Society
    • /
    • v.51 no.1
    • /
    • pp.66-70
    • /
    • 2012
  • Thoracic pedicle screw fixation techniques are still controversial for thoracic deformities because of possible complications including neurologic deficit. Methods to aid the surgeon in appropriate screw placement have included the use of intraoperative fluoroscopy and/or radiography as well as image-guided techniques. We describe our technique for free hand pedicle screw placement in the thoracic spine without any radiographic guidance and present the results of pedicle screw placement analyzed by computed tomographic scan in two human cadavers. This free hand technique of thoracic pedicle screw placement performed in a step-wise, consistent, and compulsive manner is an accurate, reliable, and safe method of insertion to treat a variety of spinal disorders, including spinal deformity.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm

  • Li, Shunlong;Dong, Jialin;Lu, Wei;Li, Hui;Xu, Wencheng;Jin, Yao
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.769-780
    • /
    • 2017
  • Cable force monitoring is an essential and critical part of the safety evaluation of cable-supported bridges. A reasonable cable force monitoring scheme, particularly, sensor placement related to accurate safety assessment and budget cost-saving becomes a major concern of bridge administrative authorities. This paper presents optimal sensor placement for cable force monitoring by selecting representative sensor positions, which consider the spatial correlativeness existing in the cable group. The limited sensors would be utilized for maximizing useful information from the monitored bridges. The maximum information coefficient (MIC), mutual information (MI) based kernel density estimation, as well as Pearson coefficients, were all employed to detect potential spatial correlation in the cable group. Compared with the Pearson coefficient and MIC, the mutual information is more suitable for identifying the association existing in cable group and thus, is selected to describe the spatial relevance in this study. Then, the bond energy algorithm, which collects clusters based on the relationship of surrounding elements, is used for the optimal placement of cable sensors. Several optimal placement strategies are discussed with different correlation thresholds for the cable group of Nanjing No.3 Yangtze River Bridge, verifying the effectiveness of the proposed method.

Film Image Transfer System (FITS): An Efficient Method for Proper Positioning of Orthodontic Mini-implants

  • Go, Taek-Su;Kim, Seong-Hun;Nelson, Gerald
    • Journal of Korean Dental Science
    • /
    • v.4 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • Purpose: To describe the newly developed Film image transfer system (FITS) for proper positioning of the orthodontic mini-implant in the narrow interdental space and considerations for better application. Materials and Methods: A patient who was planning to have orthodontic mini-implant treatment on the posterior maxilla was recruited to assess the feasibility of FITS. Dental radiographic film and bite record was taken. And then the film image was transferred on the photographic emulsion coated model using transfer light through film projector (enlarger). After exposing the photo emulsion coating on the model, the image was developed with a working solution for a paper developer and fixed. The surgical guide for the mini-implant was fabricated from the transported FITS data. Results: The completed surgical guide was easily placed intraorally, and allowed a simple and rapid placement of the mini-implant. The site of the implant placement was accurate as planned position. Conclusion: In the reported case, The FITS technique represents an effort to minimize risk to the patient and produce consistently good results based upon accurate information about the anatomy of the implant site.

Adjustable Ghajar Guide Technique for Accurate Placement of Ventricular Catheters : A Pilot Study

  • Yoon, Sang-Youl;Kwak, Youngseok;Park, Jaechan
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.604-609
    • /
    • 2017
  • Objective : An adjustable Ghajar guide is presented to improve the accuracy of the original Ghajar guide technique. The accuracy of the adjustable Ghajar guide technique is also investigated. Methods : The coronal adjustment angle from the orthogonal catheter trajectory at Kocher's point is determined based on coronal head images using an electronic picture archiving and communication system. For the adjustable Ghajar guide, a protractor is mounted on a C-shaped basal plate that is placed in contact with the margin of a burrhole, keeping the central $0^{\circ}$ line of the protractor orthogonal to the calvarial surface. A catheter guide, which is moved along the protractor and fixed at the pre-determined adjustment angle, is then used to guide the ventricular catheter into the frontal horn adjacent to the foramen of Monro. The adjustable Ghajar guide technique was applied to 20 patients, while a freehand technique based on the surface anatomy of the head was applied to another 47 patients. The accuracy of the ventricular catheter placement was then evaluated using postoperative computed tomography scans. Results : For the adjustable Ghajar guide technique (AGT) patients, the bicaudate index ranged from 0.23 to 0.33 ($mean{\pm}standard$ deviation [SD] : $0.27{\pm}0.03$) and the adjustment angle ranged from $0^{\circ}$ to $10^{\circ}$ ($mean{\pm}SD:5.2^{\circ}{\pm}3.2^{\circ}$). All the AGT patients experienced successful cerebrospinal fluid diversion with only one pass of the catheter. Optimal placement of the ventricular catheter in the ipsilateral frontal horn approximating the foramen of Monro (grade 1) was achieved in 19 patients (95.0%), while a suboptimal trajectory into a lateral corner of the frontal horn passing along a lateral wall of the frontal horn (grade 3) occurred in 1 patient (5.0%). Thus, the AGT patients experienced a significantly higher incidence of optimal catheter placement than the freehand catheterized patients (95.0% vs. 68.3%, p=0.024). Moreover, none of the AGT patients experienced any tract hemorrhages along the catheter or procedure-related complications. Conclusion : The proposed adjustable Ghajar guide technique, using angular adjustment in the coronal plane from the orthogonal trajectory at Kocher's point, facilitates accurate freehand placement of a ventricular catheter for hydrocephalic patients.