• Title/Summary/Keyword: Accuracy management

Search Result 2,704, Processing Time 0.03 seconds

Domain Knowledge Incorporated Local Rule-based Explanation for ML-based Bankruptcy Prediction Model (머신러닝 기반 부도예측모형에서 로컬영역의 도메인 지식 통합 규칙 기반 설명 방법)

  • Soo Hyun Cho;Kyung-shik Shin
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.105-123
    • /
    • 2022
  • Thanks to the remarkable success of Artificial Intelligence (A.I.) techniques, a new possibility for its application on the real-world problem has begun. One of the prominent applications is the bankruptcy prediction model as it is often used as a basic knowledge base for credit scoring models in the financial industry. As a result, there has been extensive research on how to improve the prediction accuracy of the model. However, despite its impressive performance, it is difficult to implement machine learning (ML)-based models due to its intrinsic trait of obscurity, especially when the field requires or values an explanation about the result obtained by the model. The financial domain is one of the areas where explanation matters to stakeholders such as domain experts and customers. In this paper, we propose a novel approach to incorporate financial domain knowledge into local rule generation to provide explanations for the bankruptcy prediction model at instance level. The result shows the proposed method successfully selects and classifies the extracted rules based on the feasibility and information they convey to the users.

A Study on the Factors of Normal Repayment of Financial Debt Delinquents (국내 연체경험자의 정상변제 요인에 관한 연구)

  • Sungmin Choi;Hoyoung Kim
    • Information Systems Review
    • /
    • v.23 no.1
    • /
    • pp.69-91
    • /
    • 2021
  • Credit Bureaus in Korea commonly use financial transaction information of the past and present time for calculating an individual's credit scores. Compared to other rating factors, the repayment history information accounts for a larger weights on credit scores. Accordingly, despite full redemption of overdue payments, late payment history is reflected negatively for the assessment of credit scores for certain period of the time. An individual with debt delinquency can be classified into two groups; (1) the individuals who have faithfully paid off theirs overdue debts(Normal Repayment), and (2) those who have not and as differences of creditworthiness between these two groups do exist, it needs to grant relatively higher credit scores to the former individuals with normal repayment. This study is designed to analyze the factors of normal repayment of Korean financial debt delinquents based on credit information of personal loan, overdue payments, redemption from Korea Credit Information Services. As a result of the analysis, the number of overdue and the type of personal loan and delinquency were identified as significant variables affecting normal repayment and among applied methodologies, neural network models suggested the highest classification accuracy. The findings of this study are expected to improve the performance of individual credit scoring model by identifying the factors affecting normal repayment of a financial debt delinquent.

Comparison of One- and Two-Region of Interest Strain Elastography Measurements in the Differential Diagnosis of Breast Masses

  • Hee Jeong Park;Sun Mi Kim;Bo La Yun;Mijung Jang;Bohyoung Kim;Soo Hyun Lee;Hye Shin Ahn
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.431-441
    • /
    • 2020
  • Objective: To compare the diagnostic performance and interobserver variability of strain ratio obtained from one or two regions of interest (ROI) on breast elastography. Materials and Methods: From April to May 2016, 140 breast masses in 140 patients who underwent conventional ultrasonography (US) with strain elastography followed by US-guided biopsy were evaluated. Three experienced breast radiologists reviewed recorded US and elastography images, measured strain ratios, and categorized them according to the American College of Radiology breast imaging reporting and data system lexicon. Strain ratio was obtained using the 1-ROI method (one ROI drawn on the target mass), and the 2-ROI method (one ROI in the target mass and another in reference fat tissue). The diagnostic performance of the three radiologists among datasets and optimal cut-off values for strain ratios were evaluated. Interobserver variability of strain ratio for each ROI method was assessed using intraclass correlation coefficient values, Bland-Altman plots, and coefficients of variation. Results: Compared to US alone, US combined with the strain ratio measured using either ROI method significantly improved specificity, positive predictive value, accuracy, and area under the receiver operating characteristic curve (AUC) (all p values < 0.05). Strain ratio obtained using the 1-ROI method showed higher interobserver agreement between the three radiologists without a significant difference in AUC for differentiating breast cancer when the optimal strain ratio cut-off value was used, compared with the 2-ROI method (AUC: 0.788 vs. 0.783, 0.693 vs. 0.715, and 0.691 vs. 0.686, respectively, all p values > 0.05). Conclusion: Strain ratios obtained using the 1-ROI method showed higher interobserver agreement without a significant difference in AUC, compared to those obtained using the 2-ROI method. Considering that the 1-ROI method can reduce performers' efforts, it could have an important role in improving the diagnostic performance of breast US by enabling consistent management of breast lesions.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

Time-series Change Analysis of Quarry using UAV and Aerial LiDAR (UAV와 LiDAR를 활용한 토석채취지의 시계열 변화 분석)

  • Dong-Hwan Park;Woo-Dam Sim
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.34-44
    • /
    • 2024
  • Recently, due to abnormal climate caused by climate change, natural disasters such as floods, landslides, and soil outflows are rapidly increasing. In Korea, more than 63% of the land is vulnerable to slope disasters due to the geographical characteristics of mountainous areas, and in particular, Quarry mines soil and rocks, so there is a high risk of landslides not only inside the workplace but also outside.Accordingly, this study built a DEM using UAV and aviation LiDAR for monitoring the quarry, conducted a time series change analysis, and proposed an optimal DEM construction method for monitoring the soil collection site. For DEM construction, UAV and LiDAR-based Point Cloud were built, and the ground was extracted using three algorithms: Aggressive Classification (AC), Conservative Classification (CC), and Standard Classification (SC). UAV and LiDAR-based DEM constructed according to the algorithm evaluated accuracy through comparison with digital map-based DEM.

Verification Test of High-Stability SMEs Using Technology Appraisal Items (기술력 평가항목을 이용한 고안정성 중소기업 판별력 검증)

  • Jun-won Lee
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.79-96
    • /
    • 2018
  • This study started by focusing on the internalization of the technology appraisal model into the credit rating model to increase the discriminative power of the credit rating model not only for SMEs but also for all companies, reflecting the items related to the financial stability of the enterprises among the technology appraisal items. Therefore, it is aimed to verify whether the technology appraisal model can be applied to identify high-stability SMEs in advance. We classified companies into industries (manufacturing vs. non-manufacturing) and the age of company (initial vs. non-initial), and defined as a high-stability company that has achieved an average debt ratio less than 1/2 of the group for three years. The C5.0 was applied to verify the discriminant power of the model. As a result of the analysis, there is a difference in importance according to the type of industry and the age of company at the sub-item level, but in the mid-item level the R&D capability was a key variable for discriminating high-stability SMEs. In the early stage of establishment, the funding capacity (diversification of funding methods, capital structure and capital cost which taking into account profitability) is an important variable in financial stability. However, we concluded that technology development infrastructure, which enables continuous performance as the age of company increase, becomes an important variable affecting financial stability. The classification accuracy of the model according to the age of company and industry is 71~91%, and it is confirmed that it is possible to identify high-stability SMEs by using technology appraisal items.

Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts (스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가)

  • Minkyu Kang;Namgyeong Kim;Hyunwoo Nam;Tae Yeob Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Corrosion inside electronic packages significantly impacts the system performance and reliability, necessitating non-destructive diagnostic techniques for system health management. This study aims to present a non-destructive method for assessing corrosion in copper interconnects using the Smith chart, a tool that integrates the magnitude and phase of complex impedance for visualization. For the experiment, specimens simulating copper transmission lines were subjected to temperature and humidity cycles according to the MIL-STD-810G standard to induce corrosion. The corrosion level of the specimen was quantitatively assessed and labeled based on color changes in the R channel. S-parameters and Smith charts with progressing corrosion stages showed unique patterns corresponding to five levels of corrosion, confirming the effectiveness of the Smith chart as a tool for corrosion assessment. Furthermore, by employing data augmentation, 4,444 Smith charts representing various corrosion levels were obtained, and artificial intelligence models were trained to output the corrosion stages of copper interconnects based on the input Smith charts. Among image classification-specialized CNN and Transformer models, the ConvNeXt model achieved the highest diagnostic performance with an accuracy of 89.4%. When diagnosing the corrosion using the Smith chart, it is possible to perform a non-destructive evaluation using electronic signals. Additionally, by integrating and visualizing signal magnitude and phase information, it is expected to perform an intuitive and noise-robust diagnosis.

The variability of tumor motion and respiration pattern in Stereotactic Body RadioTherapy(SBRT) for Lung cancer patients (RPM SystemTM을 이용한 호흡 관찰의 유용성 평가)

  • Park, hyun jun;Bae, sun myeong;Baek, Geum Mun;Kang, tae young;Seo, Dong Rin
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.17-25
    • /
    • 2016
  • Purpose : The purpose of this study is to evaluate the variability of tumor motion and respiration pattern in lung cancer patients undergoing Stereotactic Body RadioTherapy(SBRT) by using On-Board imager (OBI) system and Real-time Position Management (RPM) System. Materials and Methods : This study population consisted of 60 lung cancer patient treated with stereotactic body radiotherapy (48 Gy / 4 fractions). Of these, 30 were treated with gating (group 1) and 30 without gating(group2): typically the patients whose tumors showed three-dimensional respiratory motion > 10 mm were selected for gating. 4-dimensional Computed Tomography (4DCT). Cone Beam CT (CBCT) and Fluoroscopy images were used to measure the tumor motion. RPM system was used to evaluate the variability of respiration pattern on SBRT for group1. Results : The mean difference of tumor motion among 4DCT, CBCT and Fluoroscopy images in the cranio-caudal direction was 2.3 mm in group 1, 2. The maximum difference was 12.5 mm in the group 1 and 8.5 mm in group 2. The number of treatment fractions that patient's respiration pattern was within Upper-Lower threshold on SBRT in group 2 was 31 fractions. A patient who exhibited the most unstable pattern exceeded 108 times in a fraction Conclusion : Although many patients in group 1 and 2 kept the reproducibility of tumor motion within 5 mm during their treatment, some patients exhibited variability of tumor motion in the CBCT and Fluoroscopy images. It was possible to improve the accuracy of dose delivery in SBRT without gating for lung cancer patient by using RPM system.

  • PDF

Factors Affecting the Implementation Success of Data Warehousing Systems (데이터 웨어하우징의 구현성공과 시스템성공 결정요인)

  • Kim, Byeong-Gon;Park, Sun-Chang;Kim, Jong-Ok
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2007.05a
    • /
    • pp.234-245
    • /
    • 2007
  • The empirical studies on the implementation of data warehousing systems (DWS) are lacking while there exist a number of studies on the implementation of IS. This study intends to examine the factors affecting the implementation success of DWS. The study adopts the empirical analysis of the sample of 112 responses from DWS practitioners. The study results suggest several implications for researchers and practitioners. First, when the support from top management becomes great, the implementation success of DWS in organizational aspects is more likely. When the support from top management exists, users are more likely to be encouraged to use DWS, and organizational resistance to use DWS is well coped with increasing the possibility of implementation success of DWS. The support of resource increases the implementation success of DWS in project aspects while it is not significantly related to the implementation success of DWS in organizational aspects. The support of funds, human resources, and other efforts enhances the possibility of successful implementation of project; the project does not exceed the time and resource budgets and meet the functional requirements. The effect of resource support, however, is not significantly related to the organizational success. The user involvement in systems implementation affects the implementation success of DWS in organizational and project aspects. The success of DWS implementation is significantly related to the users' commitment to the project and the proactive involvement in the implementation tasks. users' task. The observation of the behaviors of competitors which possibly increases data quality does not affect the implementation success of DWS. This indicates that the quality of data such as data consistency and accuracy is not ensured through the understanding of the behaviors of competitors, and this does not affect the data integration and the successful implementation of DWS projects. The prototyping for the DWS implementation positively affects the implementation success of DWS. This indicates that the extent of understanding requirements and the communication among project members increases the implementation success of DWS. Developing the prototypes for DWS ensures the acquirement of accurate or integrated data, the flexible processing of data, and the adaptation into new organizational conditions. The extent of consulting activities in DWS projects increases the implementation success of DWS in project aspects. The continuous support for consulting activities and technology transfer enhances the adherence to the project schedule preventing the exceeding use of project budget and ensuring the implementation of intended system functions; this ultimately leads to the successful implementation of DWS projects. The research hypothesis that the capability of project teams affects the implementation success of DWS is rejected. The technical ability of team members and human relationship skills themselves do not affect the successful implementation of DWS projects. The quality of the system which provided data to DWS affects the implementation success of DWS in technical aspects. The standardization of data definition and the commitment to the technical standard increase the possibility of overcoming the technical problems of DWS. Further, the development technology of DWS affects the implementation success of DWS. The hardware, software, implementation methodology, and implementation tools contribute to effective integration and classification of data in various forms. In addition, the implementation success of DWS in organizational and project aspects increases the data quality and system quality of DWS while the implementation success of DWS in technical aspects does not affect the data quality and system quality of DWS. The data and systems quality increases the effective processing of individual tasks, and reduces the decision making times and efforts enhancing the perceived benefits of DWS.

  • PDF

A Study on the Variation of Daily Urban Water Demand Based on the Weather Condition (기후조건에 의한 상수도 일일 급수량의 변화에 관한 연구)

  • Lee, Gyeong-Hun;Mun, Byeong-Seok;Eom, Dong-Jo
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.147-158
    • /
    • 1995
  • The purpose of this study is to establish a method of estimating the daily urban water demand using statistical model. This method will be used for the development of the efficient management and operation of the water supply facilities. The data used were the daily urban water use, the population, the year lapse and the weather conditions such as temperature, precipitation, relative humidity, etc. Kwangju city was selected for the case study area. The raw data used in this study were rearranged either by month or by season for the purpose of analysis, and the statistical analysis was applied to the data to obtain the regression model. As a result, the multiple linear regression model was developed to estimate the daily urban water use based on the seather condition. The regression constant and the model coefficients were determined for each month of a year. The accuracy of the model was within 3% of average error and within 10% of maximum error. The developed model was found to be useful to the practical operation and management of the water supply facilities.

  • PDF