• Title/Summary/Keyword: Accuracy control

Search Result 4,375, Processing Time 0.028 seconds

Temporal distritution analysis of design rainfall by significance test of regression coefficients (회귀계수의 유의성 검정방법에 따른 설계강우량 시간분포 분석)

  • Park, Jin Heea;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.257-266
    • /
    • 2022
  • Inundation damage is increasing every year due to localized heavy rain and an increase of rainfall exceeding the design frequency. Accordingly, the importance of hydraulic structures for flood control and defense is also increasing. The hydraulic structures are designed according to its purpose and performance, and the amount of flood is an important calculation factor. However, in Korea, design rainfall is used as input data for hydrological analysis for the design of hydraulic structures due to the lack of sufficient data and the lack of reliability of observation data. Accurate probability rainfall and its temporal distribution are important factors to estimate the design rainfall. In practice, the regression equation of temporal distribution for the design rainfall is calculated using the cumulative rainfall percentage of Huff's quartile method. In addition, the 6th order polynomial regression equation which shows high overall accuracy, is uniformly used. In this study, the optimized regression equation of temporal distribution is derived using the variable selection method according to the principle of parsimony in statistical modeling. The derived regression equation of temporal distribution is verified through the significance test. As a result of this study, it is most appropriate to derive the regression equation of temporal distribution using the stepwise selection method, which has the advantages of both forward selection and backward elimination.

Fiber Finite Element Mixed Method for Nonlinear Analysis of Steel-Concrete Composite Structures (강-콘크리트 합성구조물의 비선형해석을 위한 화이버 유한요소 혼합법)

  • Park, Jung-Woong;Kim, Seung-Eock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.789-798
    • /
    • 2008
  • The stiffness method provides a framework to calculate the structural deformations directly from solving the equilibrium state. However, to use the displacement shape functions leads to approximate estimation of stiffness matrix and resisting forces, and accordingly results in a low accuracy. The conventional flexibility method uses the relation between sectional forces and nodal forces in which the equilibrium is always satisfied over all sections along the element. However, the determination of the element resisting forces is not so straightforward. In this study, a new fiber finite element mixed method has been developed for nonlinear anaysis of steel-concrete composite structures in the context of a standard finite element analysis program. The proposed method applies the Newton method based on the load control and uses the incremental secant stiffness method which is computationally efficient and stable. Also, the method is employed to analyze the steel-concrete composite structures, and the analysis results are compared with those obtained by ABAQUS. The comparison shows that the proposed method consistently well predicts the nonlinear behavior of the composite structures, and gives good efficiency.

Attention Deficits and Characteristics of Polysomnograms in Patients with Obstructive Sleep Apnea (폐쇄성 수면무호흡증 환자의 주의력 결함 및 수면다원검사 특징)

  • Lee, Yu-kyoung;Chang, Mun-Seon;Lee, Ho-Won;Kwak, Ho-Wan
    • Korean Journal of Health Psychology
    • /
    • v.16 no.3
    • /
    • pp.557-575
    • /
    • 2011
  • This study tried to examine the characteristics of attention deficits in patients with Obstructive Sleep Apenea(OSA) with different age levels, and to examine which indices of polysomnograms might be related to the indices of attention deficits in OSAs. Two age-level groups and a normal control group were subjected to two computerized attention tests, including a continuous performance test(CPT) and a change blindness task(CBT). In addition, the three groups were subjected to a Polysomnography to extract several sub-indicators of polysomnogram, and an Epworth Sleepiness Scale which measures subjective sleepiness. As results, the OSAs showed significantly more omission and commission errors in CPT, and they showed lower accuracy in CBT compared to the normal group. The results of a correlational analysis showed that attention deficits in OSA are significantly correlated with arterial oxygen saturation among sub-indicators of polysomnograms. In conclusion, OSAs seems to be less attentive, having difficulties in response inhibition, and having deficiencies in noticing important environmental changes. Age seems to make these deficiencies even worse. Especially, the relationship between attention deficiency and hypoxia which could cause irreversible cerebrum damage has an implication in cognitive impairment prevention through early treatment.

Dissolved Methane Measurements in Seawater and Sediment Porewater Using Membrane Inlet Mass Spectrometer (MIMS) System (Membrane Inlet Mass Spectrometer (MIMS) 시스템을 이용한 해수 및 퇴적물 공극수내 용존 메탄의 측정)

  • An, Soon-Mo;Kwon, Ji-Nam;Lim, Jea-Hyun;Park, Yun-Jung;Kang, Dong-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2007
  • Membrane inlet mass spectrometer (MIMS) has been used to accurately quantify dissolved gases in liquid samples. In this study, the MIMS system was applied to measure dissolved methane in seawater and sediment porewater. To evaluate the accuracy of the measurement, liquid samples saturated with different methane partial pressure were prepared and the methane concentrations were quantified with the MIMS system. The measured values correspond well with the expected values calculated from solubility constants. The standard error of the measurements were $0.13{\sim}0.9%$ of the mean values. The distribution of dissolved methane concentration in seawater of the South Sea of Korea revealed that the physical parameters primarily control the methane concentration in sea water. The MIMS system was effective to resolve the small dissolved methane difference among water masses. The probe type inlet in MIMS system was proven to be effective to measure porewater methane concentration.

Robust Speech Recognition Algorithm of Voice Activated Powered Wheelchair for Severely Disabled Person (중증 장애우용 음성구동 휠체어를 위한 강인한 음성인식 알고리즘)

  • Suk, Soo-Young;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.250-258
    • /
    • 2007
  • Current speech recognition technology s achieved high performance with the development of hardware devices, however it is insufficient for some applications where high reliability is required, such as voice control of powered wheelchairs for disabled persons. For the system which aims to operate powered wheelchairs safely by voice in real environment, we need to consider that non-voice commands such as user s coughing, breathing, and spark-like mechanical noise should be rejected and the wheelchair system need to recognize the speech commands affected by disability, which contains specific pronunciation speed and frequency. In this paper, we propose non-voice rejection method to perform voice/non-voice classification using both YIN based fundamental frequency(F0) extraction and reliability in preprocessing. We adopted a multi-template dictionary and acoustic modeling based speaker adaptation to cope with the pronunciation variation of inarticulately uttered speech. From the recognition tests conducted with the data collected in real environment, proposed YIN based fundamental extraction showed recall-precision rate of 95.1% better than that of 62% by cepstrum based method. Recognition test by a new system applied with multi-template dictionary and MAP adaptation also showed much higher accuracy of 99.5% than that of 78.6% by baseline system.

Progress Measurement of Structural Frame Construction using Point Cloud Data (포인트 클라우드 데이터를 활용한 골조공사 진도측정 연구)

  • Kim, Ju-Yong;Kim, Sanghee;Kim, Gwang-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • Recently, 3D laser scanning technology, which can collect accurate and quick information on phenomena, has been attracting attention among smart construction technologies. 3D laser scanning technology can obtain information most similar to reality at construction sites. In this study, we would like to apply a new member identification method to an actual building and present the possibility of applying point cloud data, which can be collected using 3D laser scanning technology, to measuring progress at construction sites. In order to carry out the research, we collected location information for component identification from BIM, set a recognition margin for the collected location information, and proceeded to identify the components that make up the building from point cloud data. Research results We confirmed that the columns, beams, walls, and slabs that make up a building can be identified from point cloud data. The identification results can be used to confirm all the parts that have been completed in the actual building, and can be used in conjunction with the unit price of each part in the project BOQ for prefabricated calculations. In addition, the point cloud data obtained through research can be used as accurate data for quality control monitoring of construction sites and building maintenance management. The research results can contribute to improving the timeliness and accuracy of construction information used in future project applications.

An Intelligent CCTV-Based Emergency Detection System for Rooftop Access Control Problems (옥상 출입 통제 문제 해결을 위한 지능형 CCTV 기반 비상 상황 감지 시스템 제안)

  • Yeeun Kang;Soyoung Ham;Seungchae Joa;Hani Lee;Seongmin Kim;Hakkyong Kim
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.59-68
    • /
    • 2024
  • With advancements in artificial intelligence technology, intelligent CCTV systems are being deployed across various environments, such as river bridges and construction sites. However, a conflict arises regarding the opening and closing of rooftop access points due to concerns over potential accidents and crime incidents and their role as emergency evacuation spaces. While the relevant law typically mandates the constant opening of designated rooftop access points, closures are often tacitly permitted in practice for security reasons, with a lack of appropriate legal measures. In this context, this study proposes a detection system utilizing intelligent CCTV to respond to emergencies that may occur on rooftops. We develop a system based on the YOLOv5 object detection model to detect assault and suicide attempts by jumping, introducing a new metric to assess them. Experimental results demonstrate that the proposed system rapidly detects assault and suicide attempts with high accuracy. Additionally, through a legal analysis of rooftop access point management, deficiencies in the legal framework regarding rooftop access and CCTV installation are identified, and improvement measures are proposed. With technological and legal improvements, we believe that crime and accident incidents in rooftop environments will decrease.

Optimization of MRI Protocol for the Musculoskeletal System (근골격계 자기공명영상 프로토콜의 최적화)

  • Hong Seon Lee;Young Han Lee;Inha Jung;Ok Kyu Song;Sungjun Kim;Ho-Taek Song;Jin-Suck Suh
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.1
    • /
    • pp.21-40
    • /
    • 2020
  • Magnetic resonance imaging (MRI) is an essential modality for the diagnosis of musculoskeletal system defects because of its higher soft-tissue contrast and spatial resolution. With the recent development of MRI-related technology, faster imaging and various image plane reconstructions are possible, enabling better assessment of three-dimensional musculoskeletal anatomy and lesions. Furthermore, the image quality, diagnostic accuracy, and acquisition time depend on the MRI protocol used. Moreover, the protocol affects the efficiency of the MRI scanner. Therefore, it is important for a radiologist to optimize the MRI protocol. In this review, we will provide guidance on patient positioning; selection of the radiofrequency coil, pulse sequences, and imaging planes; and control of MRI parameters to help optimize the MRI protocol for the six major joints of the musculoskeletal system.

Automatic Detection and Classification of Rib Fractures on Thoracic CT Using Convolutional Neural Network: Accuracy and Feasibility

  • Qing-Qing Zhou;Jiashuo Wang;Wen Tang;Zhang-Chun Hu;Zi-Yi Xia;Xue-Song Li;Rongguo Zhang;Xindao Yin;Bing Zhang;Hong Zhang
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.869-879
    • /
    • 2020
  • Objective: To evaluate the performance of a convolutional neural network (CNN) model that can automatically detect and classify rib fractures, and output structured reports from computed tomography (CT) images. Materials and Methods: This study included 1079 patients (median age, 55 years; men, 718) from three hospitals, between January 2011 and January 2019, who were divided into a monocentric training set (n = 876; median age, 55 years; men, 582), five multicenter/multiparameter validation sets (n = 173; median age, 59 years; men, 118) with different slice thicknesses and image pixels, and a normal control set (n = 30; median age, 53 years; men, 18). Three classifications (fresh, healing, and old fracture) combined with fracture location (corresponding CT layers) were detected automatically and delivered in a structured report. Precision, recall, and F1-score were selected as metrics to measure the optimum CNN model. Detection/diagnosis time, precision, and sensitivity were employed to compare the diagnostic efficiency of the structured report and that of experienced radiologists. Results: A total of 25054 annotations (fresh fracture, 10089; healing fracture, 10922; old fracture, 4043) were labelled for training (18584) and validation (6470). The detection efficiency was higher for fresh fractures and healing fractures than for old fractures (F1-scores, 0.849, 0.856, 0.770, respectively, p = 0.023 for each), and the robustness of the model was good in the five multicenter/multiparameter validation sets (all mean F1-scores > 0.8 except validation set 5 [512 x 512 pixels; F1-score = 0.757]). The precision of the five radiologists improved from 80.3% to 91.1%, and the sensitivity increased from 62.4% to 86.3% with artificial intelligence-assisted diagnosis. On average, the diagnosis time of the radiologists was reduced by 73.9 seconds. Conclusion: Our CNN model for automatic rib fracture detection could assist radiologists in improving diagnostic efficiency, reducing diagnosis time and radiologists' workload.

Development of machine learning prediction model for weight loss rate of chestnut (Castanea crenata) according to knife peeling process (밤의 칼날식 박피공정에 따른 머신 러닝 기반 중량감모율 예측 모델 개발)

  • Tae Hyong Kim;Ah-Na Kim;Ki Hyun Kwon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.236-244
    • /
    • 2024
  • A representative problem in domestic chestnut industry is the high loss of flesh due to excessive knife peeling in order to increase the peeling rate, resulting in a decrease in production efficiency. In this study, a prediction model for weight loss rate of chestnut by stage of knife peeling process was developed as undergarment study to optimize conditions of the machine. 51 control conditions of the two-stage blade peeler used in the experiment were derived and repeated three times to obtain a total of 153 data. Machine learning(ML) models including artificial neural network (ANN) and random forest (RF) were implemented to predict the weight loss rate by chestnut peel stage (after 1st peeling, 2nd peeling, and after final discharge). The performance of the models were evaluated by calculating the values of coefficient of determination (R), normalized root mean square error (nRMSE), and mean absolute error (MAE). After all peeling stages, RF model have better prediction accuracy with higher R values and low prediction error with lower nRMSE and MAE values, compared to ANN model. The final selected RF prediction model showed excellent performance with insignificant error between the experimental and predicted values. As a result, the proposed model can be useful to set optimum condition of knife peeling for the purpose of minimizing the weight loss of domestic chestnut flesh with maximizing peeling rate.