• Title/Summary/Keyword: Accuracy comparison

Search Result 3,246, Processing Time 0.026 seconds

Comparison of the estimated breeding value and accuracy by imputation reference Beadchip platform and scaling factor of the genomic relationship matrix in Hanwoo cattle

  • Soo Hyun, Lee;Chang Gwon, Dang;Mina, Park;Seung Soo, Lee;Young Chang, Lee;Jae Gu, Lee;Hyuk Kee, Chang;Ho Baek, Yoon;Chung-il, Cho;Sang Hong, Lee;Tae Jeong, Choi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.431-440
    • /
    • 2022
  • Hanwoo cattle are a unique and historical breed in Korea that have been genetically improved and maintained by the national evaluation and selection system. The aim of this study was to provide information that can help improve the accuracy of the estimated breeding values in Hanwoo cattle by showing the difference between the imputation reference chip platforms of genomic data and the scaling factor of the genetic relationship matrix (GRM). In this study, nine sets of data were compared that consisted of 3 reference platforms each with 3 different scaling factors (-0.5, 0 and 0.5). The evaluation was performed using MTG2.0 with nine different GRMs for the same number of genotyped animals, pedigree, and phenotype data. A five multi-trait model was used for the evaluation in this study which is the same model used in the national evaluation system. Our results show that the Hanwoo custom v1 platform is the best option for all traits, providing a mean accuracy improvement by 0.1 - 0.3%. In the case of the scaling factor, regardless of the imputation chip platform, a setting of -1 resulted in a better accuracy increased by 0.5 to 1.6% compared to the other scaling factors. In conclusion, this study revealed that Hanwoo custom v1 used as the imputation reference chip platform and a scaling factor of -0.5 can improve the accuracy of the estimated breeding value in the Hanwoo population. This information could help to improve the current evaluation system.

Comparison of 3D accuracy of three different digital intraoral scanners in full-arch implant impressions

  • Ozcan Akkal;Ismail Hakki Korkmaz;Funda Bayindir
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • PURPOSE. This in vitro study aimed to evaluate the performance of digital intraoral scanners in a completely edentulous patient with angled and parallel implants. MATERIALS AND METHODS. A total of 6 implants were placed at angulations of 0°, 5°, 0°, 0°, 15°, and 0° in regions #36, #34, #32, #42, #44, and #46, respectively, in a completely edentulous mandibular polyurethane model. Then, the study model created by connecting a scan body on the implants was scanned using a model scanner, and a 3D reference model was obtained. Three different intraoral scanners were used for digital impressions (PS group, TR group, and CS group, n = 10 in each group). The distances and angles between the scan bodies in these measurement groups were measured. RESULTS. While the Primescan (PS) impression group had the highest accuracy with 38 ㎛, the values of 104 ㎛ and 171 ㎛ were obtained with Trios 4 IOSs (TR) and Carestream 3600 (CS), respectively (P = .001). The CS scanner constituted the impression group with the highest deviation in terms of accuracy. In terms of dimensional differences in the angle parameter, a statistically significant difference was revealed among the mean deviation angle values according to the scanners (P < .001). While the lowest angular deviation was obtained with the PS impression group with 0.185°, the values of 0.499° and 1.250° were obtained with TR and CS, respectively. No statistically significant difference was detected among the impression groups in terms of precision values (P > .05). CONCLUSION. A statistically significant difference was found among the three digital impression groups upon comparing the impression accuracy. Implant angulation affected the impression accuracy of the digital impression groups. The most accurate impressions in terms of both distance and angle deviation were obtained with the PS impression group.

Improving Field Crop Classification Accuracy Using GLCM and SVM with UAV-Acquired Images

  • Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.93-101
    • /
    • 2024
  • Accurate field crop classification is essential for various agricultural applications, yet existing methods face challenges due to diverse crop types and complex field conditions. This study aimed to address these issues by combining support vector machine (SVM) models with multi-seasonal unmanned aerial vehicle (UAV) images, texture information extracted from Gray Level Co-occurrence Matrix (GLCM), and RGB spectral data. Twelve high-resolution UAV image captures spanned March-October 2021, while field surveys on three dates provided ground truth data. We focused on data from August (-A), September (-S), and October (-O) images and trained four support vector classifier (SVC) models (SVC-A, SVC-S, SVC-O, SVC-AS) using visual bands and eight GLCM features. Farm maps provided by the Ministry of Agriculture, Food and Rural Affairs proved efficient for open-field crop identification and served as a reference for accuracy comparison. Our analysis showcased the significant impact of hyperparameter tuning (C and gamma) on SVM model performance, requiring careful optimization for each scenario. Importantly, we identified models exhibiting distinct high-accuracy zones, with SVC-O trained on October data achieving the highest overall and individual crop classification accuracy. This success likely stems from its ability to capture distinct texture information from mature crops.Incorporating GLCM features proved highly effective for all models,significantly boosting classification accuracy.Among these features, homogeneity, entropy, and correlation consistently demonstrated the most impactful contribution. However, balancing accuracy with computational efficiency and feature selection remains crucial for practical application. Performance analysis revealed that SVC-O achieved exceptional results in overall and individual crop classification, while soybeans and rice were consistently classified well by all models. Challenges were encountered with cabbage due to its early growth stage and low field cover density. The study demonstrates the potential of utilizing farm maps and GLCM features in conjunction with SVM models for accurate field crop classification. Careful parameter tuning and model selection based on specific scenarios are key for optimizing performance in real-world applications.

Defining the optimal technique for endoscopic ultrasound shear wave elastography: a combined benchtop and animal model study with comparison to transabdominal shear wave elastography

  • Thomas J. Wang;Marvin Ryou
    • Clinical Endoscopy
    • /
    • v.56 no.2
    • /
    • pp.229-238
    • /
    • 2023
  • Background/Aims: Shear wave elastography (SWE) is used for liver fibrosis staging based on stiffness measurements. It can be performed using endoscopic ultrasound (EUS) or a transabdominal approach. Transabdominal accuracy can be limited in patients with obesity because of the thick abdomen. Theoretically, EUS-SWE overcomes this limitation by internally assessing the liver. We aimed to define the optimal technique for EUS-SWE for future research and clinical use and compare its accuracy with that of transabdominal SWE. Methods: Benchtop study: A standardized phantom model was used. The compared variables included the region of interest (ROI) size, depth, and orientation and transducer pressure. Porcine study: Phantom models with varying stiffness values were surgically implanted between the hepatic lobes. Results: For EUS-SWE, a larger ROI size of 1.5 cm and a smaller ROI depth of 1 cm demonstrated a significantly higher accuracy. For transabdominal SWE, the ROI size was nonadjustable, and the optimal ROI depth ranged from 2 to 4 cm. The transducer pressure and ROI orientation did not significantly affect the accuracy. There were no significant differences in the accuracy between transabdominal SWE and EUS-SWE in the animal model. The variability among the operators was more pronounced for the higher stiffness values. Small lesion measurements were accurate only when the ROI was entirely situated within the lesion. Conclusions: We defined the optimal viewing windows for EUS-SWE and transabdominal SWE. The accuracy was comparable in the non-obese porcine model. EUS-SWE may have a higher utility for evaluating small lesions than transabdominal SWE.

Comparison of accuracy of breeding value for cow from three methods in Hanwoo (Korean cattle) population

  • Hyo Sang Lee;Yeongkuk Kim;Doo Ho Lee;Dongwon Seo;Dong Jae Lee;Chang Hee Do;Phuong Thanh N. Dinh;Waruni Ekanayake;Kil Hwan Lee;Duhak Yoon;Seung Hwan Lee;Yang Mo Koo
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.720-734
    • /
    • 2023
  • In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and evaluation of cows are also an essential factor to increase earnings and genetic gain. This study aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP [GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest (0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP method than other methods could be because genomic information may explain Mendelian sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of estimated breeding value (EBV) for selected animals. Regression coefficient between true breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP and PI EBV in this study. In addition, number of effective chromosome segments (Me) statistic that indicates the independent loci is one of the important factors affecting the accuracy of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic relationship between reference and test population. The correlations between Me and accuracy were -0.74 in CWT, -0.75 in EMA, -0.73 in MS, and -0.75 in BF, which were strongly negative. These results proved that the estimation of genetic ability using genomic data is the most effective, and the smaller the Me, the higher the accuracy of EBV.

A Study on the Compensation Method in the Measuring System for Chopped Lightning Impulse (충격전압 재단과 측정을 위한 보상회로에 관한 연구)

  • Kim, Ik-Soo;Kim, Young-Bae;Kim, Jin-Gi;Kim, Min-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1895-1897
    • /
    • 1996
  • Lightning impulse voltage is essential to evaluate the insulation performance of electric power apparatus. Recently international standard (IEC-60) on high voltage measurement techniques are being revised. In the draft of this standard, a new calibration method is introduced and the accuracy of most industrial measuring systems is maintained by means of comparison test against the reference measuring systems. Comparison tests of dividers for chopped lightning impulse measurement were rallied out by KERI. The 700kV shielded resisitive divider with and without compensation element were done comparison test with 300kV PTB divider which have the similar charateristics as that were circulated among the laboratories. This paper reports on the calculation results of response charateristics obtained by EMTP and the comparison test results with chopped lightning impulse voltages from 150kV to 250kV. It is demonstrated that KERI are capable of realizing the idea in the revision of the IEC standand, that is, to establish traceability.

  • PDF

A study on the comparative method of prescription using gunsinjwasa theory (군신좌사 개념을 도입한 방제 검색 및 비교 시스템에 관한 연구)

  • Park, Hansu;Lee, ByungWook;Lee, Boo-Kyun
    • Herbal Formula Science
    • /
    • v.22 no.2
    • /
    • pp.45-54
    • /
    • 2014
  • Objectives : The main objective of this study is to classify herbal components to 4 groups which are similar to Gunsinjwasa grades by using herbal composition ratio of prescription. Another objective is to design the searching system which compares prescriptions and improves efficiency with 4 groups like Gunsinjwasa grades. Methods : This study was proceeded with Acess 2007 on Microsoft Windows 7 and we created composition ratio based on weight by using prescriptions of Donguibogam, Uihagipmun and Banghakhabpyun. We could make comparison and searching method of prescriptions. Results : We could search using composition ratio degree of herbs which composes prescription. And the similarity comparison of prescription was possible with value from 0 to 10. Conclusions : We could increase the accuracy of the searching prescriptions and comparison with putting into the information about composition degree and composition ratio of herbs which compose a prescription.

Evaluation and Comparison of the Solubility Models for Solute in Monosolvents

  • Min-jie Zhi;Wan-feng Chen;Yang-bo Xi
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.53-69
    • /
    • 2024
  • The solubility of Cloxacillin sodium in ethanol, 1-propanol, isopropanol, and acetone solutions was measured at different temperatures. The melting property was also tested by using a differential scanning calorimeter (DSC). Then, the solubility data were fitted using Apelblat equation and λh equation, respectively. The Wilson model and NRTL model were not utilized to correlate the test data, since Cloxacillin sodium will decompose directly after melting. For comparison purposes, the four empirical models, i.e., Apelblat equation, λh equation, Wilson model and NRTL Model, were evaluated by using 1155 solubility curves of 103 solutes tested under different monosolvents and temperatures. The comparison results indicate that the Apelblat equation is superior to the others. Furthermore, a new method (named the calculation method) for determining the Apelblat equation using only three data points was proposed to solve the problem that there may not be enough solute in the determination of solubility. The log-logistic distribution function was used to further capture the trend of the correlation and to make better quantitative comparison between predicted data and the experimental ones for the Apelblat equation determined by different methods (fitting method or calculation method). It is found that the proposed calculation method not only greatly reduces the number of test data points, but also has satisfactory prediction accuracy.

Preliminary Study on Effect of the Field Correlation Factor for Increasing of the Accuracy in a Direct Reading Instruments on Photoionization Detector for Total Volatile Organic Compounds (총휘발성유기화합물 측정 직독식장비 정확도 향상을 위한 현장보정계수 활용 연구)

  • Sungho Kim;Gwangyong Yi;Sujin Kim;Hae Dong Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.67-76
    • /
    • 2024
  • Objectives: Direct reading instruments (DRIs) are widely used by industrial hygienists and other experts for preliminary survey and identifying source locations in many industrial fields. Photoionization detectors (PIDs), which are a form of hand-held portable DRIs, have been used for a variety of airborne vaporized chemicals, especially evaporated hydrocarbon solvents. The benefits of PIDs are high sensitivity between each chemical, competitive price, and portability. With the goal of increasing the accuracy of logged PID concentrations, previous studies have performed tests for the assessment of single chemical compounds, not mixtures. The purpose of this preliminary study was to measure mixtures with a PID and charcoal tube at the same time and compare the accuracy between them. Methods: A chamber test was implemented with different mixtures of hydrocarbon chemicals (acetone, isopropyl alcohol, toluene, m-xylene) and levels in the range of 14 to 864 ppm. Three PIDs and charcoal tubes were connected to the chamber and measured the chemical mixtures simultaneously. A comparison of accuracy and the PID group of concentrations with manufacture correction factor (M_CF) and field correction factor (F_CF) applied was performed. Results: The accuracy of the PID concentrations data-logged from the PID did not meet the accuracy criteria except for the mixture level B and C logged from PID No. 2, which was 18% of all tests for meeting accuracy criteria. The mean and standard deviation (SD) of concentration (ppm) of the charcoal tube followed by each mixtures' level were 10.37±0.26, 155.33±5.28, 300.80±11.65, and 774.93±22.65, respectively. When applying F_CF into the PID concentrations, the accuracy increased by nearly 82%. However, in the case of M_CF, none met the accuracy criterion. Between the PID there were differences of logged concentrations. Conclusions: In this preliminary study, the concentration of a logged PID with F_CF applied was a better way to increase accuracy compared to applying M_CF. We suggest that additional research is necessary to consider environmental factors such as temperature and humidity.

Comparison of the accuracy of implant digital impression coping (임플란트 디지털 인상용 코핑의 정확성 비교)

  • Ahn, Gyo-Zin;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.1
    • /
    • pp.29-40
    • /
    • 2020
  • Purpose: The purpose of this study was to compare the accuracy of impression taking method using the encoded healing abutment, scan body and pick-up impression coping with different implant angulations. Materials and Methods: Master model was fabricated by 3D printer and three implants were placed into the model with 0°, 10° and 20° mesial angulation. The abutments were secured to each implants and master model was scanned to make a reference model. Group P model was fabricated using pick-up impression copings and model was scanned after securing the abutments. Encoded healing abutment (Group E) and scan body (Group S) were secured on the master model and digital impression was taken using intraoral scanner 15 times each. Each STL files of test groups were superimposed with reference model using best fit alignment and root mean square (RMS) value was analyzed. Results: The RMS values were lowest in Group P, followed by Group S and Group E. Group P showed significant difference with Group S and E (P < 0.05) while there was no significant difference between Group S and E. Correlation between implant angulation and RMS value was significant in Group E (P < 0.05). Conclusion: The pick-up impression coping method showed higher accuracy and there was no significant difference in accuracy between the healing abutment and the scan body. The clinical use of the encoded healing abutment is possible, but it should be used with caution in the case of angulated implant.