• Title/Summary/Keyword: Accuracy Assessment

Search Result 1,599, Processing Time 0.03 seconds

Development of an Automatic Measuring Program for the Craniovertebral Angle Using Photographic Image (사진 영상을 이용한 머리척추각 자동 측정 프로그램 개발)

  • Soo-Young Ye;Jong-Soon Kim
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Purpose: The prevalent use of mobile devices may contribute to musculoskeletal disorders, such as forward head posture (FHP), among users. The measurement of the craniovertebral angle (CVA) using photographic images is frequently employed in assessing FHP. Although manual CVA measurement using photographic images is reliable in clinical settings, computer programs or mobile applications to support tele-physical therapy are not yet fully developed. Therefore, in the current study, we propose an automatic method for extracting CVA from photographic images of FHP subjects to facilitate tele-physical therapy. Methods: To develop the automatic CVA measuring computer program, photographic images were obtained from 10 FHP participants. The location information obtained from the markers attached to the tragus and the spinous process of the seventh cervical vertebra were used as coordinates. Using these coordinates, straight line 1 was generated by connecting the seventh spinous process of the cervical vertebra and the tragus, while straight line 2 was drawn parallel to the coordinate obtained from the seventh spinous process of the cervical vertebra. The arc tangent function was used to calculate the angle between the two straight lines. The automatic CVA measurement computer program utilizing photographic images was developed using MATLAB (ver. 2016b). Results: The results showed that the automatic CVA measurement computer program demonstrated stable repeatability and high accuracy. Conclusion: The proposed approach was able to automatically estimate the CVA using photographic images. The developed computer program can potentially be used for easier and more reliable clinical assessment of FHP.

System Configuration of Ultrasonic Nuclear Fuel Cleaner and Quantitative Weight Measurement of Removed CRUD (초음파 핵연료 세정장비의 시스템 구성과 제거된 크러드의 정량적 무게 측정법)

  • Jung Cheol Shin;Hak Yun Lee;Un Hak Seong;Yeong Jong Joo;Yong Chan Kim;Wook Jin Han
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Crud is a corrosion deposit that forms in equipments and piping of nuclear reactor's primary systems. When crud circulates through the reactor's primary system coolant and adheres to the surface of the nuclear fuel cladding tube, it can lead to the Axial Offset Anomaly (AOA) phenomenon. This occurrence is known to potentially reduce the output of a nuclear power plant or to necessitate an early shutdown. Consequently, worldwide nuclear power plants have employed ultrasonic cleaning methods since 2000 to mitigate crud deposition, ensuring stable operation and economic efficiency. This paper details the system configuration of ultrasonic nuclear fuel cleaning equipment, outlining the function of each component. The objective is to contribute to the local domestic production of ultrasonic nuclear fuel cleaning equipment. Additionally, the paper introduces a method for accurately measuring the weight of removed crud, a crucial factor in assessing cleaning effectiveness and providing input data for the BOA code used in core safety evaluations. Accurate measurement of highly radioactive filters containing crud is essential, and weighing them underwater is a common practice. However, the buoyancy effect during underwater weighing may lead to an overestimation of the collected crud's weight. To address this issue, the paper proposes a formula correcting for buoyancy errors, enhancing measurement accuracy. This improved weight measurement method, accounting for buoyancy effects in water, is expected to facilitate the quantitative assessment of filter weights generated during chemical decontamination and system operations in nuclear power plants.

Assessment of Antarctic Ice Tongue Areas Using Sentinel-1 SAR on Google Earth Engine (Google Earth Engine의 Sentienl-1 SAR를 활용한 남극 빙설 면적 변화 모니터링)

  • Na-Mi Lee;Seung Hee Kim;Hyun-Cheol Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.285-293
    • /
    • 2024
  • This study explores the use of Sentinel-1 Synthetic Aperture Radar (SAR), processed through Google Earth Engine (GEE), to monitor changes in the areas of Antarctic ice shelves. Focusing on the Campbell Glacier Tongue (CGT) and Drygalski Ice Tongue (DIT),the research utilizes GEE's cloud computing capabilities to handle and analyze large datasets. The study employs Otsu's method for image binarization to distinguish ice shelves from the ocean and mitigates detection errors by averaging monthly images and extracting main regions. Results indicate that the CGT area decreased by approximately 26% from January 2016 to January 2024, primarily due to calving events,while DIT showed a slight increase overall,with notable reduction in recent years. Validation against Sentinel-2 optical images demonstrates high accuracy,underscoring the effectiveness of SAR and GEE for continuous, long-term monitoring of Antarctic ice shelves.

Classification of Aβ State From Brain Amyloid PET Images Using Machine Learning Algorithm

  • Chanda Simfukwe;Reeree Lee;Young Chul Youn;Alzheimer’s Disease and Related Dementias in Zambia (ADDIZ) Group
    • Dementia and Neurocognitive Disorders
    • /
    • v.22 no.2
    • /
    • pp.61-68
    • /
    • 2023
  • Background and Purpose: Analyzing brain amyloid positron emission tomography (PET) images to access the occurrence of β-amyloid (Aβ) deposition in Alzheimer's patients requires much time and effort from physicians, while the variation of each interpreter may differ. For these reasons, a machine learning model was developed using a convolutional neural network (CNN) as an objective decision to classify the Aβ positive and Aβ negative status from brain amyloid PET images. Methods: A total of 7,344 PET images of 144 subjects were used in this study. The 18F-florbetaben PET was administered to all participants, and the criteria for differentiating Aβ positive and Aβ negative state was based on brain amyloid plaque load score (BAPL) that depended on the visual assessment of PET images by the physicians. We applied the CNN algorithm trained in batches of 51 PET images per subject directory from 2 classes: Aβ positive and Aβ negative states, based on the BAPL scores. Results: The binary classification of the model average performance matrices was evaluated after 40 epochs of three trials based on test datasets. The model accuracy for classifying Aβ positivity and Aβ negativity was (95.00±0.02) in the test dataset. The sensitivity and specificity were (96.00±0.02) and (94.00±0.02), respectively, with an area under the curve of (87.00±0.03). Conclusions: Based on this study, the designed CNN model has the potential to be used clinically to screen amyloid PET images.

Automated Segmentation of Left Ventricular Myocardium on Cardiac Computed Tomography Using Deep Learning

  • Hyun Jung Koo;June-Goo Lee;Ji Yeon Ko;Gaeun Lee;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.660-669
    • /
    • 2020
  • Objective: To evaluate the accuracy of a deep learning-based automated segmentation of the left ventricle (LV) myocardium using cardiac CT. Materials and Methods: To develop a fully automated algorithm, 100 subjects with coronary artery disease were randomly selected as a development set (50 training / 20 validation / 30 internal test). An experienced cardiac radiologist generated the manual segmentation of the development set. The trained model was evaluated using 1000 validation set generated by an experienced technician. Visual assessment was performed to compare the manual and automatic segmentations. In a quantitative analysis, sensitivity and specificity were calculated according to the number of pixels where two three-dimensional masks of the manual and deep learning segmentations overlapped. Similarity indices, such as the Dice similarity coefficient (DSC), were used to evaluate the margin of each segmented masks. Results: The sensitivity and specificity of automated segmentation for each segment (1-16 segments) were high (85.5-100.0%). The DSC was 88.3 ± 6.2%. Among randomly selected 100 cases, all manual segmentation and deep learning masks for visual analysis were classified as very accurate to mostly accurate and there were no inaccurate cases (manual vs. deep learning: very accurate, 31 vs. 53; accurate, 64 vs. 39; mostly accurate, 15 vs. 8). The number of very accurate cases for deep learning masks was greater than that for manually segmented masks. Conclusion: We present deep learning-based automatic segmentation of the LV myocardium and the results are comparable to manual segmentation data with high sensitivity, specificity, and high similarity scores.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

Assessment of Coronary Stenosis Using Coronary CT Angiography in Patients with High Calcium Scores: Current Limitations and Future Perspectives (높은 칼슘 점수를 가진 환자에서 관상동맥 CT 조영술을 이용한 협착 평가의 한계와 전망)

  • Doo Kyoung Kang
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.2
    • /
    • pp.270-296
    • /
    • 2024
  • Coronary CT angiography (CCTA) is recognized for its role as a gatekeeper for invasive coronary angiography in patients suspected of coronary artery disease because it can detect significant coronary stenosis with high accuracy. However, heavy plaque in the coronary artery makes it difficult to visualize the lumen, which can lead to errors in the interpretation of the CCTA results. This is primarily due to the limited spatial resolution of CT scanners, resulting in blooming artifacts caused by calcium. However, coronary stenosis with high calcium scores often requires evaluation using CCTA. Technological methods to overcome these limitations include the introduction of high-resolution CT scanners, the development of reconstruction techniques, and the subtraction technique. Methods to improve reading ability, such as the setting of appropriate window width and height, and evaluation of the position of calcified plaque and residual visibility of the lumen in cross-sectional images, are also recommended.

Density map estimation based on deep-learning for pest control drone optimization (드론 방제의 최적화를 위한 딥러닝 기반의 밀도맵 추정)

  • Baek-gyeom Seong;Xiongzhe Han;Seung-hwa Yu;Chun-gu Lee;Yeongho Kang;Hyun Ho Woo;Hunsuk Lee;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.53-64
    • /
    • 2024
  • Global population growth has resulted in an increased demand for food production. Simultaneously, aging rural communities have led to a decrease in the workforce, thereby increasing the demand for automation in agriculture. Drones are particularly useful for unmanned pest control fields. However, the current method of uniform spraying leads to environmental damage due to overuse of pesticides and drift by wind. To address this issue, it is necessary to enhance spraying performance through precise performance evaluation. Therefore, as a foundational study aimed at optimizing drone-based pest control technologies, this research evaluated water-sensitive paper (WSP) via density map estimation using convolutional neural networks (CNN) with a encoder-decoder structure. To achieve more accurate estimation, this study implemented multi-task learning, incorporating an additional classifier for image segmentation alongside the density map estimation classifier. The proposed model in this study resulted in a R-squared (R2) of 0.976 for coverage area in the evaluation data set, demonstrating satisfactory performance in evaluating WSP at various density levels. Further research is needed to improve the accuracy of spray result estimations and develop a real-time assessment technology in the field.

Assessment of Two Clinical Prediction Models for a Pulmonary Embolism in Patients with a Suspected Pulmonary Embolism (폐색전증이 의심된 환자에서 두 가지 폐색전증 진단 예측 모형의 평가)

  • Park, Jae Seok;Choi, Won-Il;Min, Bo Ram;Park, Jie Hae;Chae, Jin Nyeong;Jeon, Young June;Yu, Ho Jung;Kim, Ji-Young;Kim, Gyoung-Ju;Ko, Sung-Min
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.4
    • /
    • pp.266-271
    • /
    • 2008
  • Background: Estimation of the probability of a patient having an acute pulmonary embolism (PE) for patients with a suspected PE are well established in North America and Europe. However, an assessment of the prediction rules for a PE has not been clearly defined in Korea. The aim of this study is to assess the prediction rules for patients with a suspected PE in Korea. Methods: We performed a retrospective study of 210 inpatients or patients that visited the emergency ward with a suspected PE where computed tomography pulmonary angiography was performed at a single institution between January 2005 and March 2007. Simplified Wells rules and revised Geneva rules were used to estimate the clinical probability of a PE based on information from medical records. Results: Of the 210 patients with a suspected PE, 49 (19.5%) patients had an actual diagnosis of a PE. The proportion of patients classified by Wells rules and the Geneva rules had a low probability of 1% and 21%, an intermediate probability of 62.5% and 76.2%, and a high probability of 33.8% and 2.8%, respectively. The prevalence of PE patients with a low, intermediate and high probability categorized by the Wells rules and Geneva rules was 100% and 4.5% in the low range, 18.2% and 22.5% in the intermediate range, and 19.7% and 50% in the high range, respectively. Receiver operating characteristic curve analysis showed that the revised Geneva rules had a higher accuracy than the Wells rules in terms of detecting PE. Concordance between the two prediction rules was poor ($\kappa$ coefficient=0.06). Conclusion: In the present study, the two prediction rules had a different predictive accuracy for pulmonary embolisms. Applying the revised Geneva rules to inpatients and emergency ward patients suspected of having PE may allow a more effective diagnostic process than the use of the Wells rules.

Predicting the suitable habitat of the Pinus pumila under climate change (기후변화에 의한 눈잣나무의 서식지 분포 예측)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.379-392
    • /
    • 2014
  • This study was performed to predict the future climate envelope of Pinus pumila, a subalpine plant and a Climate-sensitive Biological Indicator Species (CBIS) of Korea. P. pumila is distributed at Mt. seorak in South Korea. Suitable habitat were predicted under two alternative RCPscenarios (IPCC AR5). The SDM used for future prediction was a Maxent model, and the total number of environmental variables for Maxent was 8. It was found that the distribution range of P. pumila in the South Korean was $38^{\circ}7^{\prime}8^{{\prime}{\prime}}N{\sim}38^{\circ}7^{\prime}14^{{\prime}{\prime}}N$ and $128^{\circ}28^{\prime}2^{{\prime}{\prime}}E{\sim}128^{\circ}27^{\prime}38^{{\prime}{\prime}}E$ and 1,586m~1,688m in altitude. The variables that contribute the most to define the climate envelope are altitude. Climate envelope simulation accuracy was evaluated using the ROC's AUC. The P. pumila model's 5-cv AUC was found to be 0.99966. which showed that model accuracy was very high. Under both the RCP4.5 and RCP8.5 scenarios, the climate envelope for P. pumila is predicted to decrease in South Korea. According to the results of the maxent model has been applied in the current climate, suitable habitat is $790.78km^2$. The suitable habitats, are distributed in the region of over 1,400m. Further, in comparison with the suitable habitat of applying RCP4.5 and RCP8.5 suitable habitat current, reduction of area RCP8.5 was greater than RCP4.5. Thus, climate change will affect the distribution of P. pumila. Therefore, governmental measures to conserve this species will be necessary. Additionally, for CBIS vulnerability analysis and studies using sampling techniques to monitor areas based on the outcomes of this study, future study designs should incorporate the use of climatic predictions derived from multiple GCMs, especially GCMs that were not the one used in this study. Furthermore, if environmental variables directly relevant to CBIS distribution other than climate variables, such as the Bioclim parameters, are ever identified, more accurate prediction than in this study will be possible.