DOI QR코드

DOI QR Code

Assessment of Coronary Stenosis Using Coronary CT Angiography in Patients with High Calcium Scores: Current Limitations and Future Perspectives

높은 칼슘 점수를 가진 환자에서 관상동맥 CT 조영술을 이용한 협착 평가의 한계와 전망

  • 강두경 (아주대학교 의과대학 영상의학교실)
  • Received : 2023.11.01
  • Accepted : 2024.03.07
  • Published : 2024.03.01

Abstract

Coronary CT angiography (CCTA) is recognized for its role as a gatekeeper for invasive coronary angiography in patients suspected of coronary artery disease because it can detect significant coronary stenosis with high accuracy. However, heavy plaque in the coronary artery makes it difficult to visualize the lumen, which can lead to errors in the interpretation of the CCTA results. This is primarily due to the limited spatial resolution of CT scanners, resulting in blooming artifacts caused by calcium. However, coronary stenosis with high calcium scores often requires evaluation using CCTA. Technological methods to overcome these limitations include the introduction of high-resolution CT scanners, the development of reconstruction techniques, and the subtraction technique. Methods to improve reading ability, such as the setting of appropriate window width and height, and evaluation of the position of calcified plaque and residual visibility of the lumen in cross-sectional images, are also recommended.

관상동맥 CT 조영술은 높은 정확도로 유의한 관상동맥 협착을 발견할 수 있어 관상동맥 질환이 의심되는 환자들에서 침습적 관상동맥 조영술의 문지기로서의 역할을 인정받고 있다. 그러나 관상동맥에 과도한 석회화 경화반이 있으면 내강을 시각화하기 어려워 영상의 해석에 오류를 초래할 수 있다. 이는 주로 CT 스캐너의 제한적인 공간 해상도로 인해 석회화 경화반에 의한 번짐허상이 발생하기 때문이다. 그럼에도 불구하고, 높은 칼슘 점수를 보이는 CT 영상에서 관상동맥 협착을 평가해야 하는 상황을 종종 마주한다. 이러한 한계를 극복하기 위한 기술적인 방법으로 고해상도 CT 스캐너의 도입, 새로운 재구성 기법 및 후처리 기술의 개발, 감산기법 등이 있으며, 판독에 도움이 되는 방법으로 적절한 창너비 및 창높이의 설정, 혈관의 단면 영상에서 석회화 경화반의 범위 및 내강의 잔류 가시성 평가 등이 권고된다.

Keywords

References

  1. den Dekker MA, de Smet K, de Bock GH, Tio RA, Oudkerk M, Vliegenthart R. Diagnostic performance of coronary CT angiography for stenosis detection according to calcium score: systematic review and meta-analysis. Eur Radiol 2012;22:2688-2698 
  2. Koons E, VanMeter P, Rajendran K, Yu L, McCollough C, Leng S. Improved quantification of coronary artery luminal stenosis in the presence of heavy calcifications using photon-counting detector CT. Proc SPIE Int Soc Opt Eng 2022;12031:120311A 
  3. Wexler L, Brundage B, Crouse J, Detrano R, Fuster V, Maddahi J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Circulation 1996;94:1175-1192 
  4. Mergen V, Eberhard M, Manka R, Euler A, Alkadhi H. First in-human quantitative plaque characterization with ultra-high resolution coronary photon-counting CT angiography. Front Cardiovasc Med 2022;9:981012 
  5. Pack JD, Xu M, Wang G, Baskaran L, Min J, De Man B. Cardiac CT blooming artifacts: clinical significance, root causes and potential solutions. Vis Comput Ind Biomed Art 2022;5:29 
  6. Palumbo AA, Maffei E, Martini C, Tarantini G, Di Tanna GL, Berti E, et al. Coronary calcium score as gatekeeper for 64-slice computed tomography coronary angiography in patients with chest pain: per-segment and per-patient analysis. Eur Radiol 2009;19:2127-2135 
  7. Rumberger JA, Brundage BH, Rader DJ, Kondos G. Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc 1999;74:243-252 
  8. Ong TK, Chin SP, Liew CK, Chan WL, Seyfarth MT, Liew HB, et al. Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: influence of calcification. Am Heart J 2006;151:1323.e1-e6 
  9. Dewey M, Vavere AL, Arbab-Zadeh A, Miller JM, Sara L, Cox C, et al. Patient characteristics as predictors of image quality and diagnostic accuracy of MDCT compared with conventional coronary angiography for detecting coronary artery stenoses: CORE-64 multicenter international trial. AJR Am J Roentgenol 2010;194:93-102 
  10. Abdulla J, Pedersen KS, Budoff M, Kofoed KF. Influence of coronary calcification on the diagnostic accuracy of 64-slice computed tomography coronary angiography: a systematic review and meta-analysis. Int J Cardiovasc Imaging 2012;28:943-953 
  11. Meyer M, Henzler T, Fink C, Vliegenthart R, Barraza JM Jr, Nance JW Jr, et al. Impact of coronary calcium score on the prevalence of coronary artery stenosis on dual source CT coronary angiography in caucasian patients with an intermediate risk. Acad Radiol 2012;19:1316-1323 
  12. Park MJ, Jung JI, Choi YS, Ann SH, Youn HJ, Jeon GN, et al. Coronary CT angiography in patients with high calcium score: evaluation of plaque characteristics and diagnostic accuracy. Int J Cardiovasc Imaging 2011;27(Suppl 1):43-51 
  13. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O'Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 2010;56:1864-1894 
  14. Arbab-Zadeh A, Miller JM, Rochitte CE, Dewey M, Niinuma H, Gottlieb I, et al. Diagnostic accuracy of computed tomography coronary angiography according to pre-test probability of coronary artery disease and severity of coronary arterial calcification. The CORE-64 (coronary artery evaluation using 64-row multidetector computed tomography angiography) international multicenter study. J Am Coll Cardiol 2012;59:379-387 
  15. Andrew M, John H. The challenge of coronary calcium on coronary computed tomographic angiography (CCTA) scans: effect on interpretation and possible solutions. Int J Cardiovasc Imaging 2015;31(Suppl 2):145-157 
  16. Zhang S, Levin DC, Halpern EJ, Fischman D, Savage M, Walinsky P. Accuracy of MDCT in assessing the degree of stenosis caused by calcified coronary artery plaques. AJR Am J Roentgenol 2008;191:1676-1683 
  17. Sangiorgi G, Rumberger JA, Severson A, Edwards WD, Gregoire J, Fitzpatrick LA, et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 1998;31:126-133 
  18. Vavere AL, Arbab-Zadeh A, Rochitte CE, Dewey M, Niinuma H, Gottlieb I, et al. Coronary artery stenoses: accuracy of 64-detector row CT angiography in segments with mild, moderate, or severe calcification--a subanalysis of the CORE-64 trial. Radiology 2011;261:100-108 
  19. Sarwar A, Rieber J, Mooyaart EA, Seneviratne SK, Houser SL, Bamberg F, et al. Calcified plaque: measurement of area at thin-section flat-panel CT and 64-section multidetector CT and comparison with histopathologic findings. Radiology 2008;249:301-306 
  20. Tilley S 2nd, Sisniega A, Siewerdsen JH, Webster Stayman J. High-fidelity modeling of detector lag and gantry motion in CT reconstruction. Conf Proc Int Conf Image Form Xray Comput Tomogr 2018;2018:318-322 
  21. Youn H, Kam S, Han JC, Kim HK. Optical crosstalk in CT detectors and its effects on CT images. Available at. https://doi.org/10.1117/12.2043874. Published 2014. Accessed February 16, 2024 
  22. Lee SC, Cho MH, Lee SY. [Performance comparison of reconstruction algorithms for Fan-Beam computerized tomography]. J Biomed Eng Res 2001;22:223-229. Korean 
  23. Pontone G, Bertella E, Mushtaq S, Loguercio M, Cortinovis S, Baggiano A, et al. Coronary artery disease: diagnostic accuracy of CT coronary angiography--a comparison of high and standard spatial resolution scanning. Radiology 2014;271:688-694 
  24. Si-Mohamed SA, Boccalini S, Lacombe H, Diaw A, Varasteh M, Rodesch PA, et al. Coronary CT angiography with photon-counting CT: first-in-human results. Radiology 2022;303:303-313 
  25. Amanuma M, Kondo T, Sano T, Sekine T, Takayanagi T, Matsutani H, et al. Subtraction coronary computed tomography in patients with severe calcification. Int J Cardiovasc Imaging 2015;31:1635-1642 
  26. Tanaka R, Yoshioka K, Muranaka K, Chiba T, Ueda T, Sasaki T, et al. Improved evaluation of calcified segments on coronary CT angiography: a feasibility study of coronary calcium subtraction. Int J Cardiovasc Imaging 2013;29(Suppl 2):75-81 
  27. Fuchs A, Kuhl JT, Chen MY, Vilades Medel D, Alomar X, Shanbhag SM, et al. Subtraction CT angiography improves evaluation of significant coronary artery disease in patients with severe calcifications or stents-the C-Sub 320 multicenter trial. Eur Radiol 2018;28:4077-4085 
  28. Razeto M, Mohr B, Arakita K, Schuijf JD, Fuchs A, Kuhl JT, et al. Accurate, fully automated registration of coronary arteries for volumetric CT digital subtraction angiography. Available at. https://doi.org/10.1117/12.2042775. Published 2014. Accessed February 16, 2024 
  29. Li F, He Q, Xu L, Zhou Y, Sun Y, Wang Z, et al. Diagnostic accuracy of subtraction coronary CT angiography in severely calcified segments: comparison between readers with different levels of experience. Front Cardiovasc Med 2022;9:828751 
  30. De Santis D, Jin KN, Schoepf UJ, Grant KL, De Cecco CN, Nance JW Jr, et al. Heavily calcified coronary arteries: advanced calcium subtraction improves luminal visualization and diagnostic confidence in dual-energy coronary computed tomography angiography. Invest Radiol 2018;53:103-109 
  31. Qin L, Gu S, Chen C, Zhang H, Zhu Z, Chen X, et al. Initial exploration of coronary stent image subtraction using dual-layer spectral CT. Eur Radiol 2019;29:4239-4248 
  32. Yamada M, Jinzaki M, Imai Y, Yamazaki S, Imanishi N, Tanami Y, et al. Evaluation of severely calcified coronary artery using fast-switching dual-kVp 64-slice computed tomography. Circ J 2011;75:472-473 
  33. Menvielle N, Goussard Y, Orban D, Soulez G. Reduction of beam-hardening artifacts in X-ray CT. Conf Proc IEEE Eng Med Biol Soc 2005;2005:1865-1868 
  34. Carrascosa P, Leipsic JA, Deviggiano A, Capunay C, Vallejos J, Goldsmit A, et al. Virtual monochromatic imaging in patients with intermediate to high likelihood of coronary artery disease: impact of coronary calcification. Acad Radiol 2016;23:1490-1497 
  35. Boll DT, Merkle EM, Paulson EK, Mirza RA, Fleiter TR. Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector CT in anthropomorphically moving heart phantom. Radiology 2008;249:119-126 
  36. Stehli J, Clerc OF, Fuchs TA, Possner M, Grani C, Benz DC, et al. Impact of monochromatic coronary computed tomography angiography from single-source dual-energy CT on coronary stenosis quantification. J Cardiovasc Comput Tomogr 2016;10:135-140 
  37. Xu C, Yi Y, Han Y, Xie H, Lu X, Vembar M, et al. Incremental improvement of diagnostic performance of coronary CT angiography for the assessment of coronary stenosis in the presence of calcium using a dual-layer spectral detector CT: validation by invasive coronary angiography. Int J Cardiovasc Imaging 2021;37:2561-2572 
  38. Esposito A, Colantoni C, De Cobelli F, Del Vecchio A, Palmisano A, Calandrino R, et al. Multidetector computed tomography for coronary stents imaging: high-voltage (140-kVp) prospective ECG-triggered versus standard-voltage (120-kVp) retrospective ECG-gated helical scanning. J Comput Assist Tomogr 2013;37:395-401 
  39. Qi L, Tang LJ, Xu Y, Zhu XM, Zhang YD, Shi HB, et al. The diagnostic performance of coronary CT angiography for the assessment of coronary stenosis in calcified plaque. PLoS One 2016;11:e0154852 
  40. Steckmann S, Kachelriess M. Blooming artifact reduction for cardiac CT. Available at. https://doi.org/10.1109/NSSMIC.2010.5874133. Published 2010. Accessed February 15, 2024 
  41. Nelson RC, Feuerlein S, Boll DT. New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr 2011;5:286-292 
  42. Renker M, Nance JW Jr, Schoepf UJ, O'Brien TX, Zwerner PL, Meyer M, et al. Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology 2011;260:390-399 
  43. Scheffel H, Stolzmann P, Schlett CL, Engel LC, Major GP, Karolyi M, et al. Coronary artery plaques: cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol 2012;81:e363-e369 
  44. Willemink MJ, Leiner T, de Jong PA, de Heer LM, Nievelstein RA, Schilham AM, et al. Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. Eur Radiol 2013;23:1632-1642 
  45. Kachelriess M. Iterative reconstruction techniques: what do they mean for cardiac CT? Curr Cardiovasc Imaging Rep 2013;6:268-281 
  46. Li P, Xu L, Yang L, Wang R, Hsieh J, Sun Z, et al. Blooming artifact reduction in coronary artery calcification by a new de-blooming algorithm: initial Study. Sci Rep 2018;8:6945 
  47. Yan SM, Shi F, Chen YH, Dey D, Lee SE, Chang HJ, et al. Calcium removal from cardiac CT images using deep convolutional neural network. Available at. https://doi.org/10.1109/ISBI.2018.8363617. Published 2018. Accessed February 15, 2024 
  48. Hoe JW, Toh KH. A practical guide to reading CT coronary angiograms--how to avoid mistakes when assessing for coronary stenoses. Int J Cardiovasc Imaging 2007;23:617-633 
  49. Shmilovich H, Cheng VY, Dey D, Rajani R, Nakazato R, Otaki Y, et al. Optimizing image contrast display improves quantitative stenosis measurement in heavily calcified coronary arterial segments on coronary CT angiography: a proof-of-concept and comparison to quantitative invasive coronary angiography. Acad Radiol 2014;21:797-804 
  50. Cerci R, Vavere AL, Miller JM, Yoneyama K, Rochitte CE, Dewey M, et al. Patterns of coronary arterial lesion calcification by a novel, cross-sectional CT angiographic assessment. Int J Cardiovasc Imaging 2013;29:1619-1627 
  51. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 2007;50:319-326 
  52. Kajinami K, Seki H, Takekoshi N, Mabuchi H. Coronary calcification and coronary atherosclerosis: site by site comparative morphologic study of electron beam computed tomography and coronary angiography. J Am Coll Cardiol 1997;29:1549-1556 
  53. Thilo C, Gebregziabher M, Mayer FB, Zwerner PL, Costello P, Schoepf UJ. Correlation of regional distribution and morphological pattern of calcification at CT coronary artery calcium scoring with non-calcified plaque formation and stenosis. Eur Radiol 2010;20:855-861 
  54. Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 2013;61:2233-2241 
  55. Kim MY, Yang DH, Choo KS, Lee W. [Clinical application of cardiac CT: for excluding ischemic heart disease]. J Korean Soc Radiol 2022;83:3-27. Korean 
  56. Norgaard BL, Leipsic J, Koo BK, Zarins CK, Jensen JM, Sand NP, et al. Coronary computed tomography angiography derived fractional flow reserve and plaque stress. Curr Cardiovasc Imaging Rep 2016;9:2 
  57. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 2011;58:1989-1997 
  58. Zhuang B, Wang S, Zhao S, Lu M. Computed tomography angiography-derived fractional flow reserve (CT-FFR) for the detection of myocardial ischemia with invasive fractional flow reserve as reference: systematic review and meta-analysis. Eur Radiol 2020;30:712-725 
  59. Norgaard BL, Gaur S, Leipsic J, Ito H, Miyoshi T, Park SJ, et al. Influence of coronary calcification on the diagnostic performance of CT angiography derived FFR in coronary artery disease: a substudy of the NXT trial. JACC Cardiovasc Imaging 2015;8:1045-1055 
  60. Tesche C, Otani K, De Cecco CN, Coenen A, De Geer J, Kruk M, et al. Influence of coronary calcium on diagnostic performance of machine learning CT-FFR: results from MACHINE registry. JACC Cardiovasc Imaging 2020;13:760-770