• Title/Summary/Keyword: Accumulated radiation dose

Search Result 69, Processing Time 0.023 seconds

Comparative evaluation of radiation exposure in radiation-related workers (방사선 작업종사자의 피폭선량 비교 평가)

  • Baek, Seong-Min;Jang, Eun-Sung
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.4
    • /
    • pp.195-200
    • /
    • 2011
  • The purpose of this study is to investigate the dose of radiation exposure to radiation-related workers in a hospital setting, thus increasing awareness of the health risk to the radiation-related workers. The result of the analysis showed the average dose of radiation exposure to radiation-related workers in hospital K was $0.75{\pm}0.26mSv$ in 2008, $0.67{\pm}0.30mSv$ in 2009, and $0.92{\pm}0.33mSv$ in 2010. The average dose of radiation exposure in hospital P was $0.43{\pm}0.13mSv$ in 2008, $0.43{\pm}0.20mSv$ in 2009, and $0.33{\pm}0.85mSv$ in 2010. The average dose of radiation exposure in hospital K by age group was 13.39mSv for age 20 to 29, 8.37mSv for age 30 to 39, 1.19mSv for age 40 to 49, 0.28mSv for age 50 to 59, and 0.32mSv for age 60 to 69 The average dose of radiation exposure in hospital P by age group was 0.33mSv for age 20 to 29, 1.41mSv for age 30 to 39, 0.83mSv for age 40 to 49, 1.66mSv for age 50 to 59, and 1.12mSv for age 60 to 69. Moreover, the average radiation exposure to radiation-related workers over 3 year period by gender group in hospital K was $2.92{\pm}1.03mSv$ for male group and $0.94{\pm}0.93mSv$ for female group. The average radiation exposure over 3 year period by gender group in hospital P was $0.66{\pm}0.18mSv$ for male group and $1.80{\pm}0.60mSv$ for female group. Persons working in diagnostic radiology department received mean of $1.65{\pm}1.54mSv/year$, mean $1.17{\pm}0.82mSv/year$ in radiation oncology, mean $1.79{\pm}1.42mSv/year$ at nuclear medicine department and mean $0.99{\pm}0.51mSv/year$ at other departments. Radiation exposure was higher than that of other departments(p<0.05). Doctors and technologists received higher radiation exposure (mean $1.75{\pm}1.17mSv/year$, $1.60{\pm}1.39mSv/year$ each) than other workers(p<0.05). Measurement and evaluation of radiation exposure in radiation-related workers should be widely conducted accurately and consistently in the radiation-related occupational setting so that people in these occupational settings are more aware of the risk from radiation exposure, and thus give more attention and caution to decrease radiation exposure. It would be essential to minimize accumulated radiation dose in the radiation-related occupational setting in order to maintain and improve the health of radiation-related workers.

Clonal plant as experimental organisms - DNA mutation rate evaluation in the radiation contaminated area of Fukushima Daiichi NPP accident

  • KANEKO, Shingo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.25-25
    • /
    • 2018
  • The Fukushima Daiichi Nuclear Power Plant accident in March 2011 caused severe radioactive contamination in the surrounding environment. Since the accident, much attention has been paid to the biological and genetic consequences of organism inhabiting the contaminated area. The effect of radiation exposure on genetic mutation rates is little known, especially for low doses and in situ conditions. Evaluating DNA mutation by low levels of radiation dose is difficult due to the rare mutation event and lack of sequence information before the accident. In this study, correlations with air dose levels and somatic DNA mutation rates were evaluated using Next Generation Sequencer for the clonal plant, Phyllostachys edulis. This bamboo is known to spread an identical clone throughout Japan, and it has the advantage that we can compare genetic mutation rate among identical clone growing different air dose levels. We collected 94 samples of P. edulis from 14 sites with air dose rates from $0.04{\sim}7.80{\mu}Gy/h$. Their clonal identity was confirmed by analysis using 24 microsatellite markers, and then, sequences among samples were compared by MIG sequence. The sequence data were obtained from 2,718 loci. About ~200,000 bp sequence (80 bp X 2,718 loci) were obtained for each sample, and this corresponds to about 0.01% of the genome sequence of P. edulis. In these sequences, 442 loci showed polymorphism patterns including recent origin mutation, old mutation, and sequence errors. The number of mutations per sample ranged from 0 to 13, and did not correlate with air dose levels. This result indicated that DNA mutations have not accumulated in P. edulis living in the air doses levels less than $10{\mu}Gy/h$. Our study also suggests that mutation rates can be assessed by selecting an appropriate experimental approach and analyzing with next generation sequencer.

  • PDF

Comparison on the Dosimetry of TLD and OSLD Used in Nuclear Medicine (광자극발광선량계와 열형광선량계를 이용한 핵의학과 선량 측정비교)

  • Lee, Wang-Hui;Kim, Sung-Chul;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.329-334
    • /
    • 2012
  • For the dosimetry of the radiation workers, film badge, Thermo Luminescent Dosimeter (TLD), and glass dosimeter are being used and recently, there is a growing trend of using Optically Stimulated Luminescence Dosimeter (OSLD) in the world. However, OSLD is only being applied some of the field in Korea and there has been almost no study made related to OSLD. Thus, the accumulated radiation dose of TLD and OSLD that have been most frequently used in the field was compared in the radiation workers of nuclear medicine and their working areasfor 3 months. As a result, the average surface dose showed 0.85 mSv difference with 1.27 mSv for TLD and 2.12 mSv for OSLD while having 0.73 mSv difference for the average depth dose with 1.33 mSv for TLD and 2.06 mSv for OSLD. The surface dose and depth dose of OSLD showed statistically significant result with higher measurement (p<0.05).

Effect of UV -B radiation on seedlings of two Solidago virgaurea populations from the Mt. Hakusan area of Japan

  • Nakajima, Nobuyoshi;Takahashi, Shinya;Tamaoki, Masanori;Kubo, Akihiro;Aono, Mitsuko;Saji, Hikaru
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.400-402
    • /
    • 2002
  • We collected seeds of Solidago virgaurea plants growing at different altitudes on the Mt Hakusan area in Japan and cultivated them in a naturally-lit green house. Three-week-old seedlings were irradiated with supplemental UV-B for 12 h each day for 1 and 2 weeks. After a week of itradiation the seedlings of the population collected from the higher altitude at Oh-nanjiho (ON) had accumulated more anthocyanins than those from the lower altitude at Bettoh-deai (BD). Levels of anthocyanins in the ON seedlings were highly correlated with the dose of UV-B radiation and the correlation was also observed after 2 weeks. The growth of the third leaves was retarded by UV-B radiation in both populations. The extent of growth retardation in the third leaves was correlated with the dose of UV -B radiation in both populations. However, no significant difference in the extent of leaf area growth was observed between the ON and BD populations. The increase in plant fresh weight was extensively inhibited in the ON seedlings after 1 week of UV-B radiation. The inhibition was recovered to those in the BD population by 2 weeks irradiation. These results indicate that these populations respond differentially to supplementary UV -B radiation during the first week. Because flavonoids such as anthocyanins play an important role in protection against UV-B radiation in many plants, populations growing at higher altitude may be better able to adapt to increased global levels of UV-B radiation.

  • PDF

Development of Radiation Dosimeter using Commercial p-MOSFET (상용 p-MOSFET을 이용한 방사선 선량계 개발)

  • Lee, Nam-Ho;Choi, Young-Su;Lee, Yong-B.;Youk, Geun-Uck
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 1999
  • When a metal oxide field effect transistor (MOSFET) is exposed to ionizing radiation, electron/hole pairs are generated in its oxide layer. The slow moving holes of them are trapped in the oxide layer of p-MOSFET and appear as extra charges that change the characteristics of the transistor. The radiation-induced charges directly impact the threshold (turn-on) voltage of the transistor. This paper describes the use of the radiation-induced threshold voltage change as an accumulated radiation dose monitoring sensor. Two kinds of commercial p-type MOSFETS were tested in a Co-60 gamma irradiation facility to see their capabilities as a radiation dosimeter. We found that the transistors showed good linearity in their threshold voltage shift characteristics with radiation dose. The results demonstrate the potential use of commercial p-MOSFETS as inexpensive radiation sensors for the first time.

  • PDF

Use of Rank Sum Method in Identifying High Occupational Dose Jobs for ALARA Implementation

  • Cho, Yeong-Ho;Kang, Chang-Sun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.444-451
    • /
    • 1998
  • The cost-effective reduction of occupational radiation exposure (ORE) dose at a nuclear power plant could not be achieved without going through an extensive analysis of accumulated ORE dose data of existing plants. It is necessary to identify what are high ORE jobs for ALARA implementation. In this study, the Rank Sum Method (RSM) is used in identifying high ORE jobs. As a case study, the database of ORE-related maintenance and repair jobs for Kori Units 3 and 4 is used for assessment, and top twenty high ORE jobs are identified. The results are also verified and validated using the Friedman test, and RSM is found to be a very efficient way of analyzing the data.

  • PDF

Maximum Value Calculation of High Dose Radioiodine Therapy Room (고용량 방사성옥소 치료 병실의 최대치 산출)

  • Lee, Kyung-Jae;Cho, Hyun-Duck;Ko, Kil-Man;Park, Young-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • Purpose: According to increment of thyroid cancer recently, patients of high dose radioiodine therapy were accumulated. Taking into consideration the acceptance capability in the current facility, this study is to calculate the maximum value of high dose radioiodine therapy in patients for treatment. Materials and Methods: The amount and radioactivity of waste water discharged from high dose radioiodine therapy in patients admitted at present hospital as well as the radiation density of the air released into the atmosphere from the high dose radioiodine therapy ward were measured. When the calculated waste water's radiation and its density in the released air satisfies the standard (management standard for discharge into water supply 30 Bq/L, management standard for release into air 3 $Bq/m^3$) set by the Ministry of Education, Science and Technology, the maximum value of treatable high dose radioiodine therapy in patients was calculated. Results: When we calculated in a conservative view, the average density of radiation of waste water discharged from treating high dose radioiodine therapy one patient was 8 MBq/L and after 117 days of diminution in the water-purifier tank, it was 29.5 Bq/L. Also, the average density of radiation of waste water discharged from treating high dose radioiodine therapy two patients was 16 MBq/L and after 70 days of diminution in the water-purifier tank, it was 29.7 Bq/L. Under the same conditions, the density of radiation released into air through RI Ventilation Filter from the radioiodine therapy ward was 0.38 $Bq/m^3$. Conclusion: The maximum value of high dose radioiodine therapy in patients that can be treated within the acceptance capability was calculated and applied to the current facility, and if double rooms are managed by improving the ward structure, it would be possible to reduce the accumulated treatment waiting period for radioiodine therapy in patients.

  • PDF

The Comparative Analysis of External Dose Reconstruction in EPID and Internal Dose Measurement Using Monte Carlo Simulation (몬테 카를로 전산모사를 통한 EPID의 외부적 선량 재구성과 내부 선량 계측과의 비교 및 분석)

  • Jung, Joo-Young;Yoon, Do-Kun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.253-258
    • /
    • 2013
  • The purpose of this study is to evaluate and analyze the relationship between the external radiation dose reconstruction which is transmitted from the patient who receives radiation treatment through electronic portal imaging device (EPID) and the internal dose derived from the Monte Carlo simulation. As a comparative analysis of the two cases, it is performed to provide a basic indicator for similar studies. The geometric information of the experiment and that of the radiation source were entered into Monte Carlo n-particle (MCNPX) which is the computer simulation tool and to derive the EPID images, a tally card in MCNPX was used for visualizing and the imaging of the dose information. We set to source to surface distance (SSD) 100 cm for internal measurement and EPID. And the water phantom was set to be 100 cm of the source to surface distance (SSD) for the internal measurement and EPID was set to 90 cm of SSD which is 10 cm below. The internal dose was collected from the water phantom by using mesh tally function in MCNPX, accumulated dose data was acquired by four-portal beam exposures. At the same time, after getting the dose which had been passed through water phantom, dose reconstruction was performed using back-projection method. In order to analyze about two cases, we compared the penetrated dose by calibration of itself with the absorbed one. We also evaluated the reconstructed dose using EPID and partially accumulated (overlapped) dose in water phantom by four-portal beam exposures. The sum dose data of two cases were calculated as each 3.4580 MeV/g (absorbed dose in water) and 3.4354 MeV/g (EPID reconstruction). The result of sum dose match from two cases shows good agreement with 0.6536% dose error.

Dose Comparison between Fast Low Dose C-arm CT and DSA (Fast Low Dose C-arm CT와 DSA의 선량 비교)

  • Kim, Chan-woo;Kim, Jae-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.613-618
    • /
    • 2020
  • The average dose of Fast Low Dose C-arm CT used during hepatic arterial chemoembolization was compared with the average dose of DSA, and the exposure dose was analyzed by analyzing the average dose for each test technique in the total accumulated dose. 50 patients were randomly selected at our clinic and compared with Fast Low Dose C-arm CT, DAP and Air Kerma of DSA, and the accumulation of four test techniques (DSA, Fast Low Dose C-arm CT, Roadmap, Fluoroscopy) The proportion of dose (DAP, Air Kerma) was analyzed. For statistical comparative analysis, the corresponding sample T test and ANOVA test (post hoc test: Tukey) were performed using the statistical program SPSS 20.0. Fast Low Dose C-arm CT showed statistically significantly lower average dose (DAP, Air Kerma) than DSA. Reducing the number of tests for DSA can reduce the patient's exposure to medical radiation.

A Study On Radiation Detection Using CMOS Image Sensor (CMOS 이미지 센서를 사용한 방사선 측정에 관한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.193-200
    • /
    • 2015
  • In this paper, we propose the radiation measuring algorithm and the device composition using CMOS image sensor. The radiation measuring algorithm using CMOS image sensor is based on the radiation particle distinguishing algorithm projected to the CMOS image sensor and accumulated and average number of pixels of the radiation particles projected to dozens of images per second with CMOS image sensor. The radiation particle distinguishing algorithm projected to the CMOS image sensor measures the radiation particle images by dividing them into R, G and B and adjusting the threshold value that distinguishes light intensity and background from the particle of each image. The radiation measuring algorithm measures radiation with accumulated and average number of radiation particles projected to dozens of images per second with CMOS image sensor according to the preset cycle. The hardware devices to verify the suggested algorithm consists of CMOS image sensor and image signal processor part, control part, power circuit part and display part. The test result of radiation measurement using the suggested CMOS image sensor is as follows. First, using the low-cost CMOS image sensor to measure radiation particles generated similar characteristics to that from measurement with expensive GM Tube. Second, using the low-cost CMOS image sensor to measure radiation presented largely similar characteristics to the linear characteristics of expensive GM Tube.