• Title/Summary/Keyword: Accidents Scenario

Search Result 206, Processing Time 0.028 seconds

Development of Accident Scenarios for Hydrogen Refueling Station and Fuel Cell Vehicle (수소충전소 및 수소자동차의 사고 시나리오 개발)

  • Byoungjik Park;Yangkyun Kim;Ohk Kun Lim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • The registration rate of eco-friendly vehicles, such as hydrogen vehicles, is increasing rapidly, however, few first responders have experienced related accidents. Accident scenarios at hydrogen refueling stations and hydrogen vehicles on a road were investigated, and the relative importance of each scenario was analyzed using AHP analysis. Leakage, jet flame, and explosion that occurred inside and outside the hydrogen refueling station were reviewed, and the hydrogen gas explosion in the compartment showed the highest importance value. In case of the hydrogen vehicle, traffic accident statistics and actual accidents were used. It was analyzed that the hydrogen vessel explosion on the road due to the failure of TPRD and the leakage in the underground parking area were difficult to respond. The developed accident scenarios are expected to be used for first responder training.

Development Plan of Accident Scenario Modeling Based on Seasonal Weather Conditions - Focus on Chlorine Leakage Accident - (계절별 기상조건에 따른 사고시나리오 모델링 발전방안 - 염소 누출사고를 중심으로 -)

  • Kim, Hyun-Sub;Jeon, Byeong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.733-738
    • /
    • 2017
  • In this study, we selected chlorine, a typical toxic material used in many workplaces, as the leakage material, and through the analysis of alternative scenarios based on the meteorological conditions in the summer frequently encountered in accidents, we suggest ways to improve the (method of analysis/accident scenario modeling). The analysis of 296 chemical accidents from January 2014 to December 2016 found that the highest rate of occurrence was in summer, accounting for 35.81% of the total. According to the risk assessment, the influence range and number of inhabitants in the influence area were 712.4 m and 20,090 under the annual mean weather conditions and 796.2 m and 27,143 people under the summer mean weather conditions, respectively. This result implies that, under certain conditions, the range of impacts in the current alternative scenario is incomplete. Therefore, risk assessment systems need to be improved in order to take into consideration the characteristics of each chemical substance.

A Study on Validation for Mapping of Gas Detectors at a BTX Plant (BTX 공정에서 Gas Detector Mapping 적정성 검토에 관한 연구)

  • Seo, Ji Hye;Han, Man Hyoeng;Kim, Il Kwon;Chon, Young Woo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.168-178
    • /
    • 2017
  • In order to prevent major and chemical accidents, some of the plants which would like to install and operate hazard chemicals handling facilities must submit Off-site Consequence Analysis due to recent arisen leak accidents since 2015. A lot of chemical industrials choose gas detectors as mitigation equipment to early detect gas vapor. The way of placement of gas detectors has two methods; Code-based Design(CBD) and Performance-based Design. The CBD has principles for gas detectors to be installed with consideration for the place that is expected to accumulate gas, and the leak locations according to legal standards and technical guidelines, and has a possibility to be unable to detect by these rules to locate gas detectors by vapor density information. The PBD has two methods; a Geographic Method and Scenario based Method. The Scenario-based Method has been suggested to make up for the Geographic Coverage Method. This Scenario-based Method draw the best optimum placement of gas detectors by considering leak locations, leak speed information, leak directions and etc. However, the domestic placement guidelines just refers to the CBD. Therefore, this study is to compare existing placement location of gas detectors by the domestic CBD with placement locations, coverages and the number of gas detectors in accordance with the Scenario-based Method. Also this study has measures for early detecting interest of Vapor Cloud and suitable placement of gas detectors to prevent chemical accidents. The Phast software was selected to simulate vapor cloud dispersion to predict the consequence. There are two cases; an accident hole size of leak(8 mm) from API which is the highst accident hole size less than 24.5 mm, and a normal leak hole size from KOSHA Guide (1.8 mm). Detect3D was also selected to locate gas detectors efficiently and compare CBD results and PBD results. Currently, domestic methods of gas detectors do not consider any risk, but just depend on domestic code methods which lead to placement of gas detectors not to make personnels recognize tolerable or intolerable risks. The results of the Scenario-based Method, however, analyze the leak estimated range by simulating leak dispersion, and then it is able to tell tolerable risks. Thus it is considered that individuals will be able to place gas detectors reasonably by making objectives and roles flexibly according to situations in a specific plant.

Traffic Accidents Scenarios Based on Autonomous Vehicle Functional Safety Systems (자율주행차량 기능안전 시스템 기반 사고 시나리오 도출)

  • Heesoo Kim;Yongsik You;Hyorim Han;Min-je Cho;Tai-jin Song
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.264-283
    • /
    • 2023
  • Unlike conventional vehicle traffic accidents, autonomous vehicles traffic accidents can be caused by various factors, including technical problems, the environment, and driver interaction. With the future advances in autonomous driving technology, new issues are expected to emerge in addition to the existing accident causes, and various scenario-based approaches are needed to respond to them. This study developed autonomous vehicle traffic accident scenarios by collecting autonomous driving accident reports, CA DMV collision reports, autonomous driving mode disengagement reports, and autonomous driving actual accident videos. The scenarios were derived based on the functional safety system failure modes of ISO 26262 and attempted to reflect the various issues of autonomous driving functions. The autonomous vehicle scenarios derived through this study are expected to play an essential role in preventing and preparing for various autonomous vehicle traffic accidents in the future and improving the safety of autonomous driving technology.

A Study on the Test Evaluation Method of AEB (V2P) Considering the Road Environment in Korea and Euro NCAP Test Protocol v3.0.1 (국내 도로환경과 Euro NCAP VRU Test Protocol v3.0.1을 고려한 AEB(V2P) 시험평가 방법에 관한 연구)

  • Kwon, Byeong-Heon;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.28-38
    • /
    • 2019
  • In the world, traffic accidents and environmental pollution caused by the increase of vehicles are becoming a serious social problem. According to the 2016 data published by the Korea Highway Traffic Authority, Korea owns 49.9 vehicles per 100 people. This is the 28th largest number among the 35 OECD member countries. In addition, the number of deaths from traffic accidents in Korea totaled 4,292, of which 1,714 were caused by traffic accidents involving vehicles and pedestrians. To reduce these human casualties, the automotive industry is constantly working on the development and commercialization of Adaptive Driver Assist System (ADAS). ADAS is the system providing convenience and safeness for drivers. In general, ADAS consists of Autonomous Emergency Braking (AEB), Highway Driving Assist (HDA), Adaptive Cruise Control (ACC), Lane Keeping Assist System (LKAS). Among them, the AEB detects the possibility of collision by the vehicle itself and plays a role of avoiding the collision or reducing the damage through active braking. For such AEB, Euro NCAP has been developing test-evaluation methods for the vulnerable since 2017. Therefore, In this paper analyzes the scenario of Euro NCAP VRU Test Protocol v3.0.1, which will be established in 2020, and proposes test conditions according to the Korean road traffic law. In addition, the reliability of the proposed scenario and test conditions was verified by comparing and analyzing the proposed theoretical evaluation formulas and actual test results.

Risk Assessment Based on Highway Hydrogen Chloride Gas Leakage Scenario Using GIS (GIS를 활용한 고속도로 염화수소 가스 누출 시나리오 기반 리스크 평가)

  • Kim, Kuyoon;Lee, Jaejoon;Yun, Hongsik
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.591-601
    • /
    • 2021
  • As the domestic chemical industry continues to develop, handling and transportation of chemicals increases every year. Road freight in Korea accounts for more than 90%, and most of the chemical transportation is done through roads. These chemical vehicles can lead to major accidents if accidents occur. Transportation vehicles are likely to cause water pollution and soil pollution, which are factors of environmental damage, as well as traffic accidents that are the primary damage. In this work, we write a scenario for hydrogen chloride gas leakage by setting Banpo IC and Seocho IC sections as research areas, and use the ALOHA program to measure the predicted distance and analyze the time when hydrogen chloride gas reached according to the distance. In addition, risk assessment using population density was carried out for areas of damage caused by time using GIS. This suggests the need for prevention and countermeasures in areas of damage.

A Study on the Risk Assessment for Works on/near Operating Line (열차운행선 지장공사에 대한 위험도 평가 연구)

  • Jung, Do-Hyun;Wang, Jong-Bae;Lee, Su-Ryong
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1515-1524
    • /
    • 2008
  • In this study, railway accidents from constructing or maintaining works on/near operating line were reviewed during 2005-2007 years. Causes and hazards analysis of these accidents was performed to make an accident scenario for risk assessments. And the risk of worker casualty on/near operating line was quantitatively assessed. Also a constitution method of Risk Matrix for manage tolerable risk level was proposed.

  • PDF

Estimation of Effective Dose to Residents Due to Hypothetical Accidents During Dismantling of Steam Generator

  • Kyeong-Ju Lee;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.183-191
    • /
    • 2023
  • The potential impact of hypothetical accidents that occur during the immediate and deferred dismantling of the Kori Unit 1 steam generator has been comprehensively evaluated. The evaluation includes determining the inventory of radionuclides in the Steam Generator based on surface contamination measurements, assuming a rate of release for each accident scenario, and applying external and internal exposure dose coefficients to assess the effects of radionuclides on human health. The evaluation also includes calculating the atmospheric dispersion factor using the PAVAN code and analyzing three years of meteorological data from Kori NPP to determine the degree of diffusion of radionuclides in the atmosphere. Overall, the effective dose for residents living in the Exclusion Area Boundary (EAB) of Kori NPP is predicted, an it is found that the maximum level of the dose is 0.034% compared to the annual dose limit of 1 mSv for the general public. This implies that the potential impact of hypothetical accidents on human health discussed above is within acceptable limits.

Development of a Railway Accident Scenario Analysis Technique using a Preliminary Hazard Analysis(PHA) and a Quality Function Deployment(QFD) (예비위험분석기술(PHA)과 품질기능전개(QFD) 기법을 이용한 철도사고 시나리오 분석기술 개발)

  • Park Chan-Woo;Kwak Sang-Log;Wang Jong-Bae;Hong Seong-Ho;Park Joo-Nam
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.151-156
    • /
    • 2005
  • The objective of this study is to devise an accident scenario analysis method adept at creating accident scenarios at the Preliminary Hazard Analysis(PHA) step of a hazard analysis for railway system. This approach was inspired by the Quality Function Deployment(QFD) method, which is conventionally used in quality management and was used at the systematic accident scenario analysis(SASA) for the design of safer products. In this study, the QFD provides a formal and systematic schema to devise accident scenarios while maintaining objective. The accident scenario analysis method first identifies the hazard factors that cause railway accidents and explains the situation characteristics surrounding the accident. This method includes a feasibility test, a clustering process and a pattering process for a clearer understanding of the accident situation. Since this method enables an accident scenario analysis method to be performed systematically as well as objectively, this method is useful in building better accident prevention strategies. Therefore, this study can serve to reduce railway accident and be an effective tool for a hazard analysis.

  • PDF

A Case Study on the Human Error Analysis for the Prevention of Converter Furnace Accidents (전로사고 예방을 위한 인적오류 분석)

  • Shin, Woonchul;Kwon, Jun Hyuk;Park, Jae Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.195-200
    • /
    • 2014
  • Occupational fatal injury rate per 10,000 population of Korea is still higher among the OECD member countries. To prevent fatal injuries, the causes of accidents including human error should be analyzed and then appropriate countermeasures should be established. There was an severe converter furnace accident resulting in five people death by chocking in 2013. Although the accident type of the furnace accident was suffocation, many safety problems were included before reaching the death of suffocation. If the safety problems are reviewed throughly, the alternative measures based on the review would be very useful in preventing similar accidents. In this study, we investigated the converter furnace accident by using human error analysis and accident scenario analysis. As a result, it was found that the accident was caused by some human errors, inappropriate task sequence and lack of control in coordinating work by several subordinating companies. From the review of this case, the followings are suggested: First, systematic human error analysis should be included in the investigation of fatal injury accidents. Second, multi man-machine accident scenario analyis is useful in most of coordinating work. Third, the more provision of information on system state will lessen human errors. Fourth, the coordinating control in safety should be performed in the work conducting by several different companies.