• Title/Summary/Keyword: Accident management strategy

Search Result 93, Processing Time 0.031 seconds

DETAILED EVALUATION OF THE IN-VESSEL SEVERE ACCIDENT MANAGEMENT STRATEGY FOR SBLOCA USING SCDAP/RELAP5

  • Park, Rae-Joon;Hong, Seong-Wan;Kim, Sang-Baik;Kim, hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.921-928
    • /
    • 2009
  • As part of an evaluation for an in-vessel severe accident management strategy, a coolant injection into the reactor vessel under depressurization of the reactor coolant system (RCS) has been evaluated in detail using the SCDAP/RELAP5 computer code. A high-pressure sequence of a small break loss of coolant accident (SBLOCA) has been analyzed in the Optimized Power Reactor (OPR) 1000. The SCDAP/RELAP5 results have shown that safety injection timing and capacity with RCS depressurization timing and capacity are very effective on the reactor vessel failure during a severe accident. Only one train operation of the high pressure safety injection (HPSI) for 30,000 seconds with RCS depressurization prevents failure of the reactor vessel. In this case, the operation of only the low pressure safety injection (LPSI) without a HPSI does not prevent failure of the reactor vessel.

A Study on the Implementation Effect of Accident Management Strategies on Safety

  • Moosung Jae;Kim, Dong-Ha;Jin, Young-Ho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.247-256
    • /
    • 1996
  • This paper presents a new approach for assessing accident management strategies using containment event trees (CETs) developed during an individual plant examination (IPE) for a reference plant (CE type, 950 MWe PWR). Various accident management strategies to reduce risk have been proposed through IPE. Three strategies for the station blackout sequence are used as an example : 1) reactor cavity flooding only, 2) primary system depressurization only, and 3) doing both. These strategies are assumed to be initiated at about the time of core uncovery. The station blackout (SBO) sequence is selected in this paper since it is identified as one of the most threatening sequences to safety of the reference plant. The effectiveness and adverse effects of each accident management strategy are considered synthetically in the CETs. A best estimate assessment for the developed CETs using data obtained from NUREG-1150, other PRA results, and the MAAP code calculations is performed. The strategies are ranked with respect to minimizing the frequencies of Various containment failure modes. The proposed approach is demonstrated to be very flexible in that it can be applied to any kind of accident management strategy for any sequence.

  • PDF

SEVERE ACCIDENT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT AND IMPROVEMENTS SUGGESTED

  • Song, Jin Ho;Kim, Tae Woon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.207-216
    • /
    • 2014
  • This paper revisits the Fukushima accident to draw lessons in the aspect of nuclear safety considering the fact that the Fukushima accident resulted in core damage for three nuclear power plants simultaneously and that there is a high possibility of a failure of the integrity of reactor vessel and primary containment vessel. A brief review on the accident progression at Fukushima nuclear power plants is discussed to highlight the nature and characteristic of the event. As the severe accident management measures at the Fukushima Daiich nuclear power plants seem to be not fully effective, limitations of current severe accident management strategy are discussed to identify the areas for the potential improvements including core cooling strategy, containment venting, hydrogen control, depressurization of primary system, and proper indication of event progression. The gap between the Fukushima accident event progression and current understanding of severe accident phenomenology including the core damage, reactor vessel failure, containment failure, and hydrogen explosion are discussed. Adequacy of current safety goals are also discussed in view of the socio-economic impact of the Fukushima accident. As a conclusion, it is suggested that an investigation on a coherent integrated safety principle for the severe accident and development of innovative mitigation features is necessary for robust and resilient nuclear power system.

Effect of multiple-failure events on accident management strategy for CANDU-6 reactors

  • YU, Seon Oh;KIM, Manwoong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3236-3246
    • /
    • 2021
  • Lessons learned from the Fukushima Daiichi nuclear power plant accident directed that multiple failures should be considered more seriously rather than single failure in the licensing bases and safety cases because attempts to take accident management measures could be unsuccessful under the high radiation environment aggravated by multiple failures, such as complete loss of electric power, uncontrollable loss of coolant inventory, failure of essential safety function recovery. In the case of the complete loss of electric power called station blackout (SBO), if there is no mitigation action for recovering safety functions, the reactor core would be overheated, and severe fuel damage could be anticipated due to the failure of the active heat sink. In such a transient condition at CANDU-6 plants, the seal failure of the primary heat transport (PHT) pumps can facilitate a consequent increase in the fuel sheath temperature and eventually lead to degradation of the fuel integrity. Therefore, it is necessary to specify the regulatory guidelines for multiple failures on a licensing basis so that licensees should prepare the accident management measures to prevent or mitigate accident conditions. In order to explore the efficiency of implementing accident management strategies for CANDU-6 plants, this study proposed a realistic accident analysis approach on the SBO transient with multiple-failure sequences such as seal failure of PHT pumps without operator's recovery actions. In this regard, a comparative study for two PHT pump seal failure modes with and without coolant seal leakage was conducted using a best-estimate code to precisely investigate the behaviors of thermal-hydraulic parameters during transient conditions. Moreover, a sensitivity analysis for different PHT pump seal leakage rates was also carried out to examine the effect of leakage rate on the system responses. This study is expected to provide the technical bases to the accident management strategy for unmitigated transient conditions with multiple failures.

The Evaluation of Accident Management Strategy Involving Operator Action

  • Kim, Jaewhan;Jaejoo Ha
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.368-374
    • /
    • 1997
  • This paper presents a new approach to the evaluation of an accident management strategy when an operator action is involved. This approach classifies the failure in implementing a given strategy into 4 possible mechanisms, and provides their corresponding quantification methods : 1) the failure to formulate correct intention by operators, 2) the failure to take an adequate action following a correct diagnosis, 3) the failure of a system operation following an adequate action, and 4) the failure due to a delayed action. The proposed method was applied to assess a cavity flooding strategy that uses containment spray system (CSS), and the result shows that the method is more appropriate in evaluating accident management strategies when human action is involved.

  • PDF

Problems and Countermeasures in the Construction Industry Application of the Serious Accident Punishment Act (중대재해처벌법의 건설업 적용 문제점 및 대응방안)

  • Jung, Joong-Sup;Seo, Jun-Hyeok;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.37-47
    • /
    • 2022
  • The Act on the Punishment of Serious Accidents to Prevent Large-scale Disasters, including Ferry Sewol and Taean Thermal Power Plant, passed the National Assembly on January 8, 2021, and has been in effect since January 27, 2022. However, the law, in which the representative of the headquarters is unlimitedly responsible for each worker's accident, is somewhat unreasonable at a time when a company owns dozens to hundreds of construction sites due to the nature of the construction industry. I agree with the purpose of enacting the law to reduce chronic serious accidents at construction sites, but it is necessary to carefully reconsider the implementation of the law in that punishment alone cannot achieve industrial safety. Previous studies focused on revising the Occupational Safety and Health Act, but there are few studies on the impact on the construction industry after the implementation of the Serious Accident Act. Therefore, this study attempts to derive problems related to the application of the Serious Accident Act and present improvement measures. To this end, after analyzing previous studies, SWOT analysis was performed by applying the Delphi method to derive strengths, weaknesses, opportunities, and threats. In addition, the results of two surveys of safety experts such as public institutions, academia, and companies were reflected, and its countermeasures were presented as follows. S/O strategy: establishing on-site execution capabilities of health and safety management system; W/O strategy: expanding legal and system execution checks; S/T strategy: establishing a risk response system; W/T strategy: expanding consulting by external specialized institutions

EVALUATION OF AN ACCIDENT MANAGEMENT STRATEGY OF EMERGENCY WATER INJECTION USING FIRE ENGINES IN A TYPICAL PRESSURIZED WATER REACTOR

  • PARK, SOO-YONG;AHN, KWANG-IL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.719-728
    • /
    • 2015
  • Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO) accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

Use of Dynamic Reliability Method in Assessing Accident Management Strategy

  • Jae, Moosung
    • International Journal of Reliability and Applications
    • /
    • v.2 no.1
    • /
    • pp.27-36
    • /
    • 2001
  • This Paper proposes a new methodology for assessing the reliability of an accident management, which Is based on the reliability physics and the scheme to generate dynamic event tree. The methodology consists of 3 main steps: screening; uncertainty propagation; and probability estimation. Sensitivity analysis is used for screening the variables of significance. Latin Hypercube sampling technique and MAAP code are used for uncertainty propagation, and the dynamic event tree generation method is used for the estimation of non-success probability of implementing an accident management strategy. This approach is applied in assessing the non-success probability of implementing a cavity flooding strategy, which is to supply water into the reactor cavity using emergency fire systems during the sequence of station blackout at the reference plant.

  • PDF

A Systems Engineering Approach to Ex-Vessel Cooling Strategy for APR1400 under Extended Station Blackout Conditions

  • Saja Rababah;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.32-45
    • /
    • 2023
  • Implementing Severe Accident Management (SAM) strategies is crucial for enhancing a nuclear power plant's resilience and safety against severe accidents conditions represented in the analysis of Station Blackout (SBO) event. Among these critical approaches, the In-Vessel Retention (IVR) through External Reactor Vessel Cooling (IVR-ERVC) strategy plays a key role in preventing vessel failure. This work is designed to evaluate the efficacy of the IVR strategy for a high-power density reactor APR1400. The APR1400's plant is represented and simulated under steady-state and transient conditions for a station blackout (SBO) accident scenario using the computer code, ASYST. The APR1400's thermal-hydraulic response is analyzed to assess its performance as it progresses toward a severe accident scenario during an extended SBO. The effectiveness of emergency operating procedures (EOPs) and severe accident management guidelines (SAMGs) are systematically examined to assess their ability to mitigate the accident. A group of associated key phenomena selected based on Phenomenon Identification and Ranking Tables (PIRT) and uncertain parameters are identified accordingly and then propagated within DAKOTA Uncertainty Quantification (UQ) framework until a statistically representative sample is obtained and hence determine the uncertainty bands of key system parameters. The Systems Engineering methodology is applied to direct the progression of work, ensuring systematic and efficient execution.

A Preliminary Study for the Implementation of General Accident Management Strategies

  • Yang, Soo-Hyung;Kim, Soo-Hyung;Jeong, Young-Hoon;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.695-700
    • /
    • 1997
  • To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of .each strategy are also investigated.

  • PDF