• 제목/요약/키워드: Accident management actions

검색결과 42건 처리시간 0.021초

A plant-specific HRA sensitivity analysis considering dynamic operator actions and accident management actions

  • Kancev, Dusko
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1983-1989
    • /
    • 2020
  • The human reliability analysis is a method by which, in general terms, the human impact to the safety and risk of a nuclear power plant operation can be modelled, quantified and analysed. It is an indispensable element of the PSA process within the nuclear industry nowadays. The paper herein presents a sensitivity study of the human reliability analysis performed on a real nuclear power plant-specific probabilistic safety assessment model. The analysis is performed on a pre-selected set of post-initiator operator actions. The purpose of the study is to investigate the impact of these operator actions on the plant risk by altering their corresponding human error probabilities in a wide spectrum. The results direct the fact that the future effort should be focused on maintaining the current human reliability level, i.e. not letting it worsen, rather than improving it.

중대사고관리를 위한 훈련도구(TRAIN)의 개발 (Development of TRAIN for Accident Management)

  • Moo-Sung Jae
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.84-87
    • /
    • 2001
  • 중대사고관리는 원전의 노심손상사고를 예방하거나 완화시키기 위하여 기존의 가용자원이나 시스템, 운전의 행위를 사용하는 것을 말한다. 제어실이나 기술지원반을 위하여 중대사고관리를 위하여 개발된 TRAIN(Training pRogram for Accident Management Program In Nuclear Power Plant)의 초기문자로 명명된 시스템을 본 논문에 소개하였다. TRAIN은 중대사고현상 KB(Knowledge Base)와 사고시나리오 KB, 제어도와 함께 사고관리 절차도 그리고 필요정보로 구성되어있으며 제어실이나 기술지원반에게 중대사고의 현상지식을 취득하게 하고, 발전소의 취약특성을 파악하게 하며, 상당한 스트레스하에서 주어진 문제를 해결하게 하는데 본 연구의 결과는 기여할 것이다.

  • PDF

반도체산업에서의 안전사고 분석 패턴 추출 모델 연구 (A study for safety-accident analysis pattern extract model in semiconductor industry)

  • 윤용구;박범
    • 대한안전경영과학회지
    • /
    • 제8권2호
    • /
    • pp.13-23
    • /
    • 2006
  • The present study has investigated the patterns and the causes of safety -accidents on the accident-data in semiconductor Industries through near miss report the cases in the advanced companies. The ratio of incomplete actions to incomplete state was 4 to 6 as the cases of accidents in semiconductor industries in the respect of Human-ware, Hard- ware, Environment-ware and System-ware. The ratio of Human to machine in the attributes of semiconductor accident was 4 to 1. The study also investigated correlation among the system related to production, accident, losses and time. In semiconductor industry, we found that pattern of safety-accident analysis is organized potential, interaction, complexity, medium. Therefore, this study find out that semiconductor model consists of organization, individual, task, machine, environment and system.

신뢰도 물리모델을 이용한 인간신뢰도분석 연구 (Human Reliability Analysis Using Reliability Physics Models)

  • Moo-sung Jae
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.123-130
    • /
    • 2002
  • 본 논문은 사고관리방안 수행에 있어서 발생되는 인적오류의 정량적 평가방법을 개발하여 공동범람 사고관리방안의 예제문제에 적용한 연구결과를 기술하고있다. PSA에서 사용되었던 기존의 인간오류평가 방법론인 THERP, HCR, SLIM-MAUD 방법의 특징을 검토하여 장단점을 기술하였다. 본 연구에서 제시하는 인간오류평가 방법론은 신뢰도물리모델을 이용하는 새로운 HRA 분석방법이다. 불확실성 분석을 위하여 MAAP 코드와 LHS 코드가 사용되었다. 본 연구를 통하여 제안하는 방법은 매우 유연하여 중대사고관리방안과 관련한 다양한 인간오류행위에 대한 평가에 사용될 수 있음을 보여주었다.

APPLICATION OF UNCERTAINTY ANALYSIS TO MAAP4 ANALYSES FOR LEVEL 2 PRA PARAMETER IMPORTANCE DETERMINATION

  • Roberts, Kevin;Sanders, Robert
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.767-790
    • /
    • 2013
  • MAAP4 is a computer code that can simulate the response of a light water reactor power plant during severe accident sequences, including actions taken as part of accident management. The code quantitatively predicts the evolution of a severe accident starting from full power conditions given a set of system faults and initiating events through events such as core melt, reactor vessel failure, and containment failure. Furthermore, models are included in the code to represent the actions that could mitigate the accident by in-vessel cooling, external cooling of the reactor pressure vessel, or cooling the debris in containment. A key element tied to using a code like MAAP4 is an uncertainty analysis. The purpose of this paper is to present a MAAP4 based analysis to examine the sensitivity of a key parameter, in this case hydrogen production, to a set of model parameters that are related to a Level 2 PRA analysis. The Level 2 analysis examines those sequences that result in core melting and subsequent reactor pressure vessel failure and its impact on the containment. This paper identifies individual contributors and MAAP4 model parameters that statistically influence hydrogen production. Hydrogen generation was chosen because of its direct relationship to oxidation. With greater oxidation, more heat is added to the core region and relocation (core slump) should occur faster. This, in theory, would lead to shorter failure times and subsequent "hotter" debris pool on the containment floor.

동시 출현 기반 키워드 네트워크 기법을 이용한 이동식 사다리 추락 재해 위험 요인 연관 구조 모델링 (Correlational Structure Modelling for Fall Accident Risk Factors of Portable Ladders Using Co-occurrence Keyword Networks)

  • 황종문;신성우
    • 한국안전학회지
    • /
    • 제36권3호
    • /
    • pp.50-59
    • /
    • 2021
  • The main purpose of accident analysis is to identify the causal factors and the mechanisms of those factors leading to the accident. However, current accident analysis techniques focus only on finding the factors related to the accident without providing more insightful results, such as structures or mechanisms. For this reason, preventive actions for safety management are concentrated on the elimination of causal factors rather than blocking the connection or chain of accident processes. This greatly reduces the effectiveness of safety management in practice. In the present study, a technique to model the correlational structure of accident risk factors is proposed by using the co-occurrence keyword network analysis technique. To investigate the effectiveness of the proposed technique, a case study involving a portable ladder fall accident is conducted. The results indicate that the proposed technique can construct the correlational structure model of the risk factors of a portable ladder fall accident. This proves the effectiveness of the proposed technique in modeling the correlational structure of accident risk factors.

GIS 기반 철도사고 관리시스템 구축방안 연구 (A Study on the Development of GIS-based Railway Accident Management System)

  • 이영석;장성용;김시곤;이원영
    • 한국지리정보학회지
    • /
    • 제9권2호
    • /
    • pp.42-53
    • /
    • 2006
  • 2004년 4월 1일 한국의 고속철도인 KTX가 개통되었고, 100년이 넘는 한국철도의 역사 가운데, 철도의 안전관리는 상대적으로 소홀히 취급되어 왔다. 이에 본 연구에서는 철도안전을 도모하고, 철도사고를 효율적이며 체계적으로 관리할 수 있는 시스템의 구축방안을 제시하였다. 먼저, 국내외의 철도사고 관리시스템과 국내 철도사고의 현황을 파악하였으며, 이에 따라 위치개념을 도입하는 GIS(geographic information system)기반 철도사고 관리시스템의 프로토타입을 개발하였다. 이 관리시스템은 공간 데이터베이스와 속성데이터베이스로 구성되어 있으며, 비상대응지도를 제공하는 기능을 가지고 있다.

  • PDF

Effect of multiple-failure events on accident management strategy for CANDU-6 reactors

  • YU, Seon Oh;KIM, Manwoong
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3236-3246
    • /
    • 2021
  • Lessons learned from the Fukushima Daiichi nuclear power plant accident directed that multiple failures should be considered more seriously rather than single failure in the licensing bases and safety cases because attempts to take accident management measures could be unsuccessful under the high radiation environment aggravated by multiple failures, such as complete loss of electric power, uncontrollable loss of coolant inventory, failure of essential safety function recovery. In the case of the complete loss of electric power called station blackout (SBO), if there is no mitigation action for recovering safety functions, the reactor core would be overheated, and severe fuel damage could be anticipated due to the failure of the active heat sink. In such a transient condition at CANDU-6 plants, the seal failure of the primary heat transport (PHT) pumps can facilitate a consequent increase in the fuel sheath temperature and eventually lead to degradation of the fuel integrity. Therefore, it is necessary to specify the regulatory guidelines for multiple failures on a licensing basis so that licensees should prepare the accident management measures to prevent or mitigate accident conditions. In order to explore the efficiency of implementing accident management strategies for CANDU-6 plants, this study proposed a realistic accident analysis approach on the SBO transient with multiple-failure sequences such as seal failure of PHT pumps without operator's recovery actions. In this regard, a comparative study for two PHT pump seal failure modes with and without coolant seal leakage was conducted using a best-estimate code to precisely investigate the behaviors of thermal-hydraulic parameters during transient conditions. Moreover, a sensitivity analysis for different PHT pump seal leakage rates was also carried out to examine the effect of leakage rate on the system responses. This study is expected to provide the technical bases to the accident management strategy for unmitigated transient conditions with multiple failures.

Assessing the Feasibility of an Accident Management Strategy Using Dynamic Reliability Methods

  • Moosung Jae;Kim, Jae-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 1997
  • This paper presents a new dynamic approach for assessing feasibility associated with the implementation of accident management strategies by the operators. This approach includes the combined use of both the concept of reliability physics and a dynamic event tree generation scheme. The reliability physics is based on the concept of a comparison between two competing variables, i.e., the requirement and the achievement parameter, while the dynamic event tree generation scheme on the continuous generation of the possible event sequences at every branch point up to the desired solution. This approach is applied to a cavity flooding strategy in a reference plant, which is to supply water into the reactor cavity using emergency fire systems in the station blackout sequence. The MAAP code and Latin Hypercube sampling technique are used to determine the uncertainty of the requirement parameter. It has been demonstrated that this combined methodology may contribute to assessing the success likelihood of the operator actions required during accidents and therefore to developing the accident management procedures.

  • PDF

비행안전을 고려한 조종사 개인별 자질관리(IPQC)제도의 개선에 관한 연구 (A Study on Improvement of the Individual Pilot Quality Control System for Flight Safety)

  • 윤봉수;이성희
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 1999년도 추계학술대회
    • /
    • pp.53-72
    • /
    • 1999
  • IPQC system was introduced for the flight safety at the age of scientific safety management in the 1980s. In spite of performing this system, aircraft accidents caused by human factors, which were above 70% among all flight accident factors, have not been reduced. Accordingly, throughout this paper I analyzed the aircraft accident factors by means of a literature study and a pilot survey. Then, based on the notion of TQC(Total Quality Control), I hierarchically classified Individual Quality into Capacity Management, Safety Management, and General Management and did the low-ranked management factors as well. AHP (Analytic Hierarchy Process), one of the scientific management methods, was used for estimating the relative importance of Individual Quality Control factors and the heavy aircraft accident causes over the last 20 years were analyzed according to the flight ranks. Based on the comparative analysis of results derived above, an IPQC model as flight ranks is established. In short, according to this newly suggested model we can obtain the maximum flight safety with the preventive actions against aircraft accidents caused by human factors and by improving the operation effect under the reasonable pilot management.

  • PDF