• Title/Summary/Keyword: Accident conditions

Search Result 964, Processing Time 0.026 seconds

Protective Coatings for Accident Tolerant Fuel Claddings - A Review

  • Rofida Hamad Khlifa;Nicolay N. Nikitenkov
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.115-147
    • /
    • 2023
  • The Fukushima accident in 2011 revealed some major flaws in traditional nuclear fuel materials under accidental conditions. Thus, the focus of research has shifted toward "accident tolerant fuel" (ATF). The aim of this approach is to develop fuel material solutions that lead to improved reactor safety. The application of protective coatings on the surface of nuclear fuel cladding has been proposed as a near-term solution within the ATF framework. Many coating materials are being developed and evaluated. In this article, an overview of different zirconium-based alloys currently in use in the nuclear industry is provided, and their performances in normal and accidental conditions are discussed. Coating materials proposed by different institutions and organizations, their performances under different conditions simulating nuclear reactor environments are reviewed. The strengths and weaknesses of these coatings are highlighted, and the challenges addressed by different studies are summarized, providing a basis for future research. Finally, technologies and methods used to synthesize thin-film coatings are outlined.

An evaluation on in-pile behaviors of SiCf/SiC cladding under normal and accident conditions with updated FROBA-ATF code

  • Chen, Ping;Qiu, Bowen;Li, Yuanming;Wu, Yingwei;Hui, Yongbo;Deng, Yangbin;Zhang, Kun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1236-1249
    • /
    • 2021
  • Although there are still controversial opinions and uncertainty on application of SiCf/SiC composite cladding as next-generation cladding material for its great oxidation resistance in high temperature steam environment and other outstanding advantages, it cannot deny that SiCf/SiC cladding is a potential accident tolerant fuel (ATF) cladding with high research priority and still in the engineering design stage for now. However, considering its disadvantages, such as low irradiated thermal conductivity, ductility that barely not exist, further evaluations of its in-pile behaviors are still necessary. Based on the self-developed code we recently updated, relevant thermohydraulic and mechanical models in FROBA-ATF were applied to simulate the cladding behaviors under normal and accident conditions in this paper. Even through steady-state performance analysis revealed that this kind of cladding material could greatly reduce the oxidation thickness, the thermal performance of UO2-SiC was poor due to its low inpile thermal conductivity and creep rate. Besides, the risk of failure exists when reactor power decreased. With geometry optimization and dopant addition in pellets, the steady-state performance of UO2-SiC was enhanced and the failure risk was reduced. The thermal and mechanical performance of the improved UO2-SiC was further evaluated under Loss of coolant accident (LOCA) and Reactivity Initiated Accident (RIA) conditions. Transient results showed that the optimized ATF had better thermal performance, lower cladding hoop stress, and could provide more coping time under accident conditions.

Effect of multiple-failure events on accident management strategy for CANDU-6 reactors

  • YU, Seon Oh;KIM, Manwoong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3236-3246
    • /
    • 2021
  • Lessons learned from the Fukushima Daiichi nuclear power plant accident directed that multiple failures should be considered more seriously rather than single failure in the licensing bases and safety cases because attempts to take accident management measures could be unsuccessful under the high radiation environment aggravated by multiple failures, such as complete loss of electric power, uncontrollable loss of coolant inventory, failure of essential safety function recovery. In the case of the complete loss of electric power called station blackout (SBO), if there is no mitigation action for recovering safety functions, the reactor core would be overheated, and severe fuel damage could be anticipated due to the failure of the active heat sink. In such a transient condition at CANDU-6 plants, the seal failure of the primary heat transport (PHT) pumps can facilitate a consequent increase in the fuel sheath temperature and eventually lead to degradation of the fuel integrity. Therefore, it is necessary to specify the regulatory guidelines for multiple failures on a licensing basis so that licensees should prepare the accident management measures to prevent or mitigate accident conditions. In order to explore the efficiency of implementing accident management strategies for CANDU-6 plants, this study proposed a realistic accident analysis approach on the SBO transient with multiple-failure sequences such as seal failure of PHT pumps without operator's recovery actions. In this regard, a comparative study for two PHT pump seal failure modes with and without coolant seal leakage was conducted using a best-estimate code to precisely investigate the behaviors of thermal-hydraulic parameters during transient conditions. Moreover, a sensitivity analysis for different PHT pump seal leakage rates was also carried out to examine the effect of leakage rate on the system responses. This study is expected to provide the technical bases to the accident management strategy for unmitigated transient conditions with multiple failures.

Prevention System for Real Time Traffic Accident (실시간 교통사고 예방 시스템)

  • Hong You-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.47-54
    • /
    • 2006
  • In order to reduce traffic accidents, many researchers studied a traffic accident model. The Cause of traffic accidents is usually the mis calculation of traffic signals or bad traffic intersection design. Therefore, to analyse the cause of traffic accidents, it takes effort. This paper, it calculates the optimal safe car speed considering intersection conditions and weather conditions. It will recommend calculation of 1/3 in vehicle speed when there are rainy days and snow days. But the problem is that it will always display the same speed limit when whether conditions change. In order to solve these problems, in this paper, it is proposed the calculation of optimal safety speed algorithm uses weather conditions and road conditions. Computer simulations is prove that it computes the traffic speed limit correctly, which proposed considering intelligent traffic accident prediction algorithms.

  • PDF

The Study of Danger Rate for Improvement of Traffic Facilities (교통시설개선을 위한 위험도 도출에 관한 연구)

  • Sohn, Jin-hyeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.285-291
    • /
    • 2006
  • A traffic accident is occurred by unbalance of reciprocal action of driver, vehicle and road conditions. To prevent the traffic accident, rapid and perfect road improvement is needed. But most of road improvement plans have insufficient budget. So decision maker has to determine the priority to invest. A model in this study, analyzing the effect of road conditions to the traffic accident, helps to decide the priority in road improvement. This study considered five danger indices ; 1) traffic volume, 2) speed variance, 3) vehicle mixing rate, 4) curved line radius, and 5) difference between design speed and running speed. Danger rate composed by five indices can be a scale of priority of improvement. The model in this study didn't consider all of factors about traffic accident. But this study can propose the methodology for traffic safety policy. For deriving the model, this study used data from highways in Korea and United States. Therefore the model has to apply the highways only.

  • PDF

The Effects of Activities and Working Conditions on Fire Accidents on Construction Sites

  • Yi, Kyoo-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.383-389
    • /
    • 2020
  • Accidents on construction sites involving fires do not occur as often as accidents involving falls from height or collapses. However, once a fire accident occurs, there is a high risk of a large number of casualties. Fire on construction sites is affected by working conditions and the types of activities the construction workers are engaged in at the sites. This study aims to identify activities and working conditions at construction sites that are vulnerable to fire, and analyse how they correlate with each other and how they affect the causes and consequences of fire accidents at construction sties. I analysed 40 fire accident reports and listed the situations vulnerable to fire at construction sites considering direct causes, activities, and working conditions. The most dangerous combination of fire hazards can be the heating devices used during rest/sleep in the office/cabin/storage during cold weather. The next most hazardous combination can be sparks arising from painting, waterproofing, insulation, plumbing, or welding/melting work in an underground or confined space.

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

Analysis System for Traffic Accident based on WEB (WEB 기반 교통사고 분석)

  • Hong, You-Sik;Han, Chang-Pyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.13-20
    • /
    • 2022
  • Road conditions and weather conditions are very important factors in the case of traffic accident fatalities in fog and ice sections that occur on roads in winter. In this paper, a simulation was performed to estimate the traffic accident risk rate assuming traffic accident prediction data. In addition, in this paper, in order to reduce traffic accidents and prevent traffic accidents, factor analysis and traffic accident fatality rates were predicted using the WEKA data mining technique and TENSOR FLOW open source data on traffic accident fatalities provided by the Korea Transportation Corporation.

Development Plan of Accident Scenario Modeling Based on Seasonal Weather Conditions - Focus on Chlorine Leakage Accident - (계절별 기상조건에 따른 사고시나리오 모델링 발전방안 - 염소 누출사고를 중심으로 -)

  • Kim, Hyun-Sub;Jeon, Byeong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.733-738
    • /
    • 2017
  • In this study, we selected chlorine, a typical toxic material used in many workplaces, as the leakage material, and through the analysis of alternative scenarios based on the meteorological conditions in the summer frequently encountered in accidents, we suggest ways to improve the (method of analysis/accident scenario modeling). The analysis of 296 chemical accidents from January 2014 to December 2016 found that the highest rate of occurrence was in summer, accounting for 35.81% of the total. According to the risk assessment, the influence range and number of inhabitants in the influence area were 712.4 m and 20,090 under the annual mean weather conditions and 796.2 m and 27,143 people under the summer mean weather conditions, respectively. This result implies that, under certain conditions, the range of impacts in the current alternative scenario is incomplete. Therefore, risk assessment systems need to be improved in order to take into consideration the characteristics of each chemical substance.

Development of Qualification Analysis Preliminary Frame for Railway Personal Injury Accident (철도 사상사고 위험도 평가를 위한 정량화 분석 기초모델 개발)

  • Park, Chan-Woo;Wnag, Jong-Bae;Park, Joo-Nam;Kwak, Sang-Log
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1227-1232
    • /
    • 2007
  • The objective of this study is to develop qualification analysis preliminary frame for railway personal injury accident. In this research, we develop accident scenarios to analyze systematically and evaluate quantitatively fatality accident scenarios for railway personal. The accident scenario analysis first identifies the hazardous events and explains the hazardous conditions that surround the accident and cause railway accidents. This method includes a feasibility test, a clustering process and a pattering process for a clearer understanding of the accident situation. Since this method enables an accident scenario analysis to be performed systematically as well as objectively, this method is useful in building better accident prevention strategies. Therefore, this study could serve to reduce railway accidents and could be an effective tool for a hazard analysis.

  • PDF