• Title/Summary/Keyword: Accident Detection of Crossroad

Search Result 4, Processing Time 0.018 seconds

Robust Vision Based Algorithm for Accident Detection of Crossroad (교차로 사고감지를 위한 강건한 비젼기반 알고리즘)

  • Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.117-130
    • /
    • 2011
  • The purpose of this study is to produce a better way to detect crossroad accidents, which involves an efficient method to produce background images in consideration of object movement and preserve/demonstrate the candidate accident region. One of the prior studies proposed an employment of traffic signal interval within crossroad to detect accidents on crossroad, but it may cause a failure to detect unwanted accidents if any object is covered on an accident site. This study adopted inverse perspective mapping to control the scale of object, and proposed different ways such as producing robust background images enough to resist surrounding noise, generating candidate accident regions through information on object movement, and by using edge information to preserve and delete the candidate accident region. In order to measure the performance of proposed algorithm, a variety of traffic images were saved and used for experiment (e.g. recorded images on rush hours via DVR installed on crossroad, different accident images recorded in day and night rainy days, and recorded images including surrounding noise of lighting and shades). As a result, it was found that there were all 20 experiment cases of accident detected and actual effective rate of accident detection amounted to 76.9% on average. In addition, the image processing rate ranged from 10~14 frame/sec depending on the area of detection region. Thus, it is concluded that there will be no problem in real-time image processing.

Detection Algorithm of Crossroad Traffic Accident Using the Sequence of Traffic Lights (신호등 주기를 이용한 교차로 교통사고감지 알고리즘)

  • Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.17-24
    • /
    • 2009
  • This paper suggests the background image and the algorism of detecting an accident at crossroads by using the sequence of traffic light at crossroads, which is installed within the crossroads, in order to detect an accident within crossroads. A method of using the existing image contains a problem that the accident-detection ratio gets lower in a situation that noise occurs loudly given using new accident model, the confused situation, or sound source. This study used the accident detection by developing a filter of using the property of histogram in the sequence of traffic light at crossroads and the background image, in order to reduce misjudgment of an accident caused by external shadow, vehicle stoppage, vehicle headlight, and externally environmental influence. As a result of experimenting by acquiring 15 actual accident images in order to examine the performance of the suggested algorism, the accident was detected in all the 15 videos. Even as for a new accident model, the accident within crossroads could be detected.

Development of the Algorithm for Traffic Accident Auto-Detection in Signalized Intersection (신호교차로 내 실시간 교통사고 자동검지 알고리즘 개발)

  • O, Ju-Taek;Im, Jae-Geuk;Hwang, Bo-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.97-111
    • /
    • 2009
  • Image-based traffic information collection systems have entered widespread adoption and use in many countries since these systems are not only capable of replacing existing loop-based detectors which have limitations in management and administration, but are also capable of providing and managing a wide variety of traffic related information. In addition, these systems are expanding rapidly in terms of purpose and scope of use. Currently, the utilization of image processing technology in the field of traffic accident management is limited to installing surveillance cameras on locations where traffic accidents are expected to occur and digitalizing of recorded data. Accurately recording the sequence of situations around a traffic accident in a signal intersection and then objectively and clearly analyzing how such accident occurred is more urgent and important than anything else in resolving a traffic accident. Therefore, in this research, we intend to present a technology capable of overcoming problems in which advanced existing technologies exhibited limitations in handling real-time due to large data capacity such as object separation of vehicles and tracking, which pose difficulties due to environmental diversities and changes at a signal intersection with complex traffic situations, as pointed out by many past researches while presenting and implementing an active and environmentally adaptive methodology capable of effectively reducing false detection situations which frequently occur even with the Gaussian complex model analytical method which has been considered the best among well-known environmental obstacle reduction methods. To prove that the technology developed by this research has performance advantage over existing automatic traffic accident recording systems, a test was performed by entering image data from an actually operating crossroad online in real-time. The test results were compared with the performance of other existing technologies.

Traffic Accident Detection of Crossroad Using Computer Vision (컴퓨터 비젼을 이용한 교차로 사고 감지)

  • Jeong, Sung-Hwan;Lee, Joonwhoan
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.736-739
    • /
    • 2010
  • 본 논문에서는 배경영상과 교차로 내의 신호등의 주기를 이용한 교차로 교통 사고 감지 방법을 제안한다. 교차로 내의 객체의 움직임 궤적 정보, 객체의 움직임 정보에 기반한 배경영상 생성과 교차로 신호등 주기를 이용하는 사고 감지 방법으로 구성된다. 환경적인 잡음과 카메라의 잡음을 효과적으로 제거하고 객체를 개별적으로 추적하지 않고 사고를 감지 할 수 있는 알고리즘을 개발하였다. 제안한 알고리즘의 성능을 알아보기 위하여 교차로에 설치된 DVR을 통해 다양한 환경의 사고영상을 저장하여 실험한 결과 모든 동영상에서 사고를 감지하였다.