• 제목/요약/키워드: Access-based Consumption

Search Result 245, Processing Time 0.027 seconds

Column-aware Transaction Management Scheme for Column-Oriented Databases (컬럼-지향 데이터베이스를 위한 컬럼-인지 트랜잭션 관리 기법)

  • Byun, Si-Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 2014
  • The column-oriented database storage is a very advanced model for large-volume data analysis systems because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly datawarehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using MLC flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. The features of non-volatility, low power consumption, and fast access time for read operations are sufficient grounds to support flash memory as major storage components of modern database servers. However, we need to improve traditional transaction management scheme due to the relatively slow characteristics of column compression and flash operation as compared to RAM memory. In this research, we propose a new scheme called Column-aware Multi-Version Locking (CaMVL) scheme for efficient transaction processing. CaMVL improves transaction performance by using compression lock and multi version reads for efficiently handling slow flash write/erase operation in lock management process. We also propose a simulation model to show the performance of CaMVL. Based on the results of the performance evaluation, we conclude that CaMVL scheme outperforms the traditional scheme.

Development of an Equipment Operating System for Effective Earthwork Operations (효율적인 토공작업을 위한 건설장비 운영시스템 개발)

  • Ahn, Seo-Hyun;Kim, Sung-Keun;Lim, So-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.153-166
    • /
    • 2017
  • Recently, the construction industry has been pursuing economical construction by introducing improved construction equipment and methods. However, in many cases, the equipment operation according to the intuition of the field manager and in the manner of traditional methods impedes the increase in effectiveness in terms of productivity and economy. The performance of new construction equipment has rapidly improved; however, the maximum effect of mechanized construction cannot be obtained unless the effective management and operation methods are implemented. According to the expert survey, it has been discovered that the problems of conventional construction equipment operation methods can be classified into several categories: allocation of construction equipment that is not suitable for the construction work, the combination of equipment that does not take into consideration real-time field situations, the decline in the skill of the construction equipment drivers, and lack of real-time access to necessary information. This paper proposes a construction equipment management system to solve these problems. The construction equipment management system can provide a method to maximize the work rate of the construction equipment fleet by developing an equipment allocation plan based on field conditions, whenever necessary, and transferring this information to the construction equipment drivers in real time. Ultimately, it is believed that the application of the construction equipment operation system in the field will make it possible to reduce carbon emissions by improving productivity and reducing fuel consumption.

A Study on Information Bias Perceived by Users of AI-driven News Recommendation Services: Focusing on the Establishment of Ethical Principles for AI Services (AI 자동 뉴스 추천 서비스 사용자가 인지하는 정보 편향성에 대한 연구: AI 서비스의 윤리 원칙 수립을 중심으로)

  • Minjung Park;Sangmi Chai
    • Knowledge Management Research
    • /
    • v.25 no.3
    • /
    • pp.47-71
    • /
    • 2024
  • AI-driven news recommendation systems are widely used today, providing personalized news consumption experiences. However, there are significant concerns that these systems might increase users' information bias by mainly showing information from limited perspectives. This lack of diverse information access can prevent users from forming well-rounded viewpoints on specific issues, leading to social problems like Filter bubbles or Echo chambers. These issues can deepen social divides and information inequality. This study aims to explore how AI-based news recommendation services affect users' perceived information bias and to create a foundation for ethical principles in AI services. Specifically, the study looks at the impact of ethical principles like accountability, the right to explanation, the right to choose, and privacy protection on users' perceptions of information bias in AI news systems. The findings emphasize the need for AI service providers to strengthen ethical standards to improve service quality and build user trust for long-term use. By identifying which ethical principles should be prioritized in the design and implementation of AI services, this study aims to help develop corporate ethical frameworks, internal policies, and national AI ethics guidelines.

Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network (주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석)

  • Shin, Hyunbo;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.179-200
    • /
    • 2019
  • Word-of-mouth (WoM) is defined by consumer activities that share information concerning consumption. WoM activities have long been recognized as important in corporate marketing processes and have received much attention, especially in the marketing field. Recently, according to the development of the Internet, the way in which people exchange information in online news and online communities has been expanded, and WoM is diversified in terms of word of mouth, score, rating, and liking. Social media makes online users easy access to information and online WoM is considered a key source of information. Although various studies on WoM have been preceded by this phenomenon, there is no meta-analysis study that comprehensively analyzes them. This study proposed a method to extract major researches by applying text mining techniques and to grasp the main issues of researches in order to find the trend of WoM research using scholarly big data. To this end, a total of 4389 documents were collected by the keyword 'Word-of-mouth' from 1941 to 2018 in Scopus (www.scopus.com), a citation database, and the data were refined through preprocessing such as English morphological analysis, stopwords removal, and noun extraction. To carry out this study, we adopted main path analysis (MPA) and word co-occurrence network analysis. MPA detects key researches and is used to track the development trajectory of academic field, and presents the research trend from a macro perspective. For this, we constructed a citation network based on the collected data. The node means a document and the link means a citation relation in citation network. We then detected the key-route main path by applying SPC (Search Path Count) weights. As a result, the main path composed of 30 documents extracted from a citation network. The main path was able to confirm the change of the academic area which was developing along with the change of the times reflecting the industrial change such as various industrial groups. The results of MPA revealed that WoM research was distinguished by five periods: (1) establishment of aspects and critical elements of WoM, (2) relationship analysis between WoM variables, (3) beginning of researches of online WoM, (4) relationship analysis between WoM and purchase, and (5) broadening of topics. It was found that changes within the industry was reflected in the results such as online development and social media. Very recent studies showed that the topics and approaches related WoM were being diversified to circumstantial changes. However, the results showed that even though WoM was used in diverse fields, the main stream of the researches of WoM from the start to the end, was related to marketing and figuring out the influential factors that proliferate WoM. By applying word co-occurrence network analysis, the research trend is presented from a microscopic point of view. Word co-occurrence network was constructed to analyze the relationship between keywords and social network analysis (SNA) was utilized. We divided the data into three periods to investigate the periodic changes and trends in discussion of WoM. SNA showed that Period 1 (1941~2008) consisted of clusters regarding relationship, source, and consumers. Period 2 (2009~2013) contained clusters of satisfaction, community, social networks, review, and internet. Clusters of period 3 (2014~2018) involved satisfaction, medium, review, and interview. The periodic changes of clusters showed transition from offline to online WoM. Media of WoM have become an important factor in spreading the words. This study conducted a quantitative meta-analysis based on scholarly big data regarding WoM. The main contribution of this study is that it provides a micro perspective on the research trend of WoM as well as the macro perspective. The limitation of this study is that the citation network constructed in this study is a network based on the direct citation relation of the collected documents for MPA.

Adaptive RFID anti-collision scheme using collision information and m-bit identification (충돌 정보와 m-bit인식을 이용한 적응형 RFID 충돌 방지 기법)

  • Lee, Je-Yul;Shin, Jongmin;Yang, Dongmin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.1-10
    • /
    • 2013
  • RFID(Radio Frequency Identification) system is non-contact identification technology. A basic RFID system consists of a reader, and a set of tags. RFID tags can be divided into active and passive tags. Active tags with power source allows their own operation execution and passive tags are small and low-cost. So passive tags are more suitable for distribution industry than active tags. A reader processes the information receiving from tags. RFID system achieves a fast identification of multiple tags using radio frequency. RFID systems has been applied into a variety of fields such as distribution, logistics, transportation, inventory management, access control, finance and etc. To encourage the introduction of RFID systems, several problems (price, size, power consumption, security) should be resolved. In this paper, we proposed an algorithm to significantly alleviate the collision problem caused by simultaneous responses of multiple tags. In the RFID systems, in anti-collision schemes, there are three methods: probabilistic, deterministic, and hybrid. In this paper, we introduce ALOHA-based protocol as a probabilistic method, and Tree-based protocol as a deterministic one. In Aloha-based protocols, time is divided into multiple slots. Tags randomly select their own IDs and transmit it. But Aloha-based protocol cannot guarantee that all tags are identified because they are probabilistic methods. In contrast, Tree-based protocols guarantee that a reader identifies all tags within the transmission range of the reader. In Tree-based protocols, a reader sends a query, and tags respond it with their own IDs. When a reader sends a query and two or more tags respond, a collision occurs. Then the reader makes and sends a new query. Frequent collisions make the identification performance degrade. Therefore, to identify tags quickly, it is necessary to reduce collisions efficiently. Each RFID tag has an ID of 96bit EPC(Electronic Product Code). The tags in a company or manufacturer have similar tag IDs with the same prefix. Unnecessary collisions occur while identifying multiple tags using Query Tree protocol. It results in growth of query-responses and idle time, which the identification time significantly increases. To solve this problem, Collision Tree protocol and M-ary Query Tree protocol have been proposed. However, in Collision Tree protocol and Query Tree protocol, only one bit is identified during one query-response. And, when similar tag IDs exist, M-ary Query Tree Protocol generates unnecessary query-responses. In this paper, we propose Adaptive M-ary Query Tree protocol that improves the identification performance using m-bit recognition, collision information of tag IDs, and prediction technique. We compare our proposed scheme with other Tree-based protocols under the same conditions. We show that our proposed scheme outperforms others in terms of identification time and identification efficiency.