• Title/Summary/Keyword: Access networks

Search Result 2,024, Processing Time 0.025 seconds

A Performance Modeling of Wireless Sensor Networks as a Queueing Network with On and Off Servers

  • Ali, Mustafa K. Mehmet;Gu, Hao
    • Journal of Communications and Networks
    • /
    • v.11 no.4
    • /
    • pp.406-415
    • /
    • 2009
  • In this work, we consider performance modeling of a wireless sensor network with a time division multiple access (TDMA) media access protocol with slot reuse. It is assumed that all the nodes are peers of each other and they have two modes of operation, active and sleep modes. We model the sensor network as a Jackson network with unreliable nodes with on and off states. Active and sleep modes of sensor nodes are modeled with on and off states of unreliable nodes. We determine the joint distribution of the sensor node queue lengths in the network. From this result, we derive the probability distribution of the number of active nodes and blocking probability of node activation. Then, we present the mean packet delay, average sleep period of a node and the network throughput. We present numerical results as well as simulation results to verify the analysis. Finally, we discuss how the derived results may be used in the design of sensor networks.

An Energy-Efficient Mobility-Supporting MAC Protocol in Wireless Sensor Networks

  • Peng, Fei;Cui, Meng
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.203-209
    • /
    • 2015
  • Although mobile applications are an essential characteristic of wireless sensor networks, most existing media access control (MAC) protocols focus primarily on static networks. In these protocols, fixed periodic neighbor discovery and schedule updating are used to connect and synchronize neighbors to provide successful data transmission; however, they cannot adapt to mobile speed variation and degrade the network performance dramatically. In this paper, we propose a mobile-supporting mechanism for MAC protocols, in which the decision to update the neighbors of a mobile node is made adaptively according to the mobile speed. Analysis and simulation results demonstrate that the mechanism efficiently avoids the disconnection of amobile node from its neighbors and achieves a better performance as compared with fixed periodic neighbor discovery.

Congestion Control for Best-Effort Services In Wireless Networks (무선망에서 Best-effort 서비스를 위한 폭주제어 방법)

  • 김승천
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.716-722
    • /
    • 2001
  • This paper has defined the 3G and beyond wireless networks as the one that is based on IP network architecture and proposed the congestion control scheme in the access networks. Basically the proposed method is built on the ECN(Explicit Congestion Notification) and utilizing the advantages of the wireless and I networks in broadcasting packet in their access network. Consequently it provides the efficiency in controlling the congestion that can be happened by the mobility support in the future wireless networks.

  • PDF

Optimized Handoff Scheme with Fuzzy logic in Heterogeneous Vehicular Mobile Networks (이종의 차량 모바일 네트워크에서 퍼지 로직을 이용한 최적의 핸드오프 기법)

  • Roh, Youngsam;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • The development of wireless communication systems has resulted in the availability of several access technologies at any geographic area, such as 3G networks, wireless local area networks (WLANs) and wireless broadband networks. The development of these technologies is provided for users who have experienced mobile network environments which are slow or fast-movement environment and change distance between the AP(Access Point). This paper describes network performance issues in various environmental changes. Also, Fuzzy logic is applied to evaluate the performance in vehicle networks around users' environmental factors to focusing on the minimizing of transfer time and costs. First, WLAN and 3G networks fixed distance between AP, Second, WLAN and 3G networks random distance between APs, finally above two environmental with vehicle Ad hoc networks is analyzed. These V2I and V2V environmental condition are assumed. Results which based on Fuzzy logic suggest an optimal performance in vehicle network environments according to vehicle speed and distance between APs. Proposed algorithm shows 21% and 13% improvement of networks performance in V2I and V2V environment.

An Automatic AP Connections Scheme using iBeacon (iBeacon을 이용한 AP 자동접속 방안)

  • Nam, ChoonSung;Shin, DongRyeol
    • Journal of Internet Computing and Services
    • /
    • v.18 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • There are two kinds of wireless network access to a certain place by using smart devices - 1) open (anonymous) - access and 2) user-authorized access. The open-access is a non-authorization connection method which does not need to require Smart device's user authorized information. It means open-access use only user's SSID (Service Set Identifier) information to access the wireless AP devices following public wireless network standard. This access mechanism is not suitable to use all of public wireless networks because users have to get all wireless network information around them. As a result, huge data for smart devices should be one of the most critical overload problems for them. Secondly, the user-authorized access method uses wireless network information (SSID and password) chosen by the users. So, the users have to remember and use the network access information data manually whenever accessing the network. Like open-access, this access method also has the operational and inconvenient problem for the users - manually inputting access information whenever connecting to the network. To overcome this problem in both schemes, we propose two improved wireless network access methods: 1) the implementation of automatic AP connection mechanism using user-authorization and iBeacon messages, and 2) SSID registration form for public wireless networks.

A Study of Fronthaul Networks in CRANs - Requirements and Recent Advancements

  • Waqar, Muhammad;Kim, Ajung;Cho, Peter K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4618-4639
    • /
    • 2018
  • One of the most innovative paradigms for the next-generation of wireless cellular networks is the cloud-radio access networks (C-RANs). In C-RANs, base station functions are distributed between the remote radio heads (RHHs) and base band unit (BBU) pool, and a communication link is defined between them which is referred as the fronthaul. This leveraging link is expected to reduce the CAPEX (capital expenditure) and OPEX (operating expense) of envisioned cellular architectures as well as improves the spectral and energy efficiencies, provides the high scalability, and efficient mobility management capabilities. The fronthaul link carries the baseband signals between the RRHs and BBU pool using the digital radio over fiber (RoF) based common public radio interface (CPRI). CPRI based optical links imposed stringent synchronization, latency and throughput requirements on the fronthaul. As a result, fronthaul becomes a hinder in commercial deployments of C-RANs and is seen as one of a major bottleneck for backbone networks. The optimization of fronthaul is still a challenging issue and requires further exploration at industrial and academic levels. This paper comprehensively summarized the current challenges and requirements of fronthaul networks, and discusses the recently proposed system architectures, virtualization techniques, key transport technologies and compression schemes to carry the time-sensitive traffic in fronthaul networks.

A study on the fairness ring protocol for high-speed networks (고속 통신망을 위한 공정성 링 프로토콜에 관한 연구)

  • 김동윤;송명렬;장민석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.1
    • /
    • pp.139-150
    • /
    • 1997
  • For high-speed networks, a new ring protocal is proposed in this paper. A ring network combined with destination removal can achieve much higher network throughput than the channel transmission rate. However, such a network exhibits fairness problems. Over a past few years, global fairness algorithms such as ATMR and Metaring have been proposed to solve such problems. But the ring access time delay and fairness in such networks are sensitive to the network parameters such as network size and traffic distribution. In addition to guaranteeing fair ring access to all nodes, there are several other important performance aspects in such networks. The one is that fairness is enforced while node throughputs are kept as high as possible. And another performance measure is access delay and more specifically Head-Of-Line(HOL) delay, i.e., the amount of time the first cell in the transmission buffer of a node has to wait before it accesses the ring. HOL delay is a mijor component in the transmission jitter of the synchronous traffic transmission. A key idea of the proposed ring protocol is to find the nodes that have much more chances to access the ring than any other nodes in the independently distributed node architecture. Since destined by many cells need to share a part of the bandwidths with the next node for the fairness in as much as performance degradation does not become critical. To investigate the performance behavior of the proposed ring protocol for various network condition,s several performance parameters wuch as ring access time delay, and throughput are compared with those of the ATMR and Metaring protocols using simulation package, SIMAN.

  • PDF

A study on a packet scheduler for wireless access networks (무선 가입자 액세스 망에서 QoS 패킷 스케줄러에 관한 연구)

  • Jang Jae Shin;Choi Jin Seek;Kwak Dong Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1380-1386
    • /
    • 2004
  • Future communication networks would consist of wired and wireless access networks where there would be various types of traffic services. To meet the QoS requirements of those various traffic services simultaneously, new QoS control schemes are required. Since they are simple to deploy, cheep to manage, and easy to support subscriber mobility, wireless access networks are considered here. In this paper, a wireless joint buffer management and scheduling (W-JoBS) scheme, which is a modified version of the original JoBS algorithm at error-prone wireless access networks, is proposed. W-JoBS scheme is for providing service fairness among traffic classes with service compensation and channel-state dependent packet scheduling schemes. With computer simulation, this proposed W-JoBS scheme is evaluated and the performance of W-JoBS is compared with that of the original JoBS.

Providing Efficient Secured Mobile IPv6 by SAG and Robust Header Compression

  • Wu, Tin-Yu;Chao, Han-Chieh;Lo, Chi-Hsiang
    • Journal of Information Processing Systems
    • /
    • v.5 no.3
    • /
    • pp.117-130
    • /
    • 2009
  • By providing ubiquitous Internet connectivity, wireless networks offer more convenient ways for users to surf the Internet. However, wireless networks encounter more technological challenges than wired networks, such as bandwidth, security problems, and handoff latency. Thus, this paper proposes new technologies to solve these problems. First, a Security Access Gateway (SAG) is proposed to solve the security issue. Originally, mobile terminals were unable to process high security calculations because of their low calculating power. SAG not only offers high calculating power to encrypt the encryption demand of SAG's domain, but also helps mobile terminals to establish a multiple safety tunnel to maintain a secure domain. Second, Robust Header Compression (RoHC) technology is adopted to increase the utilization of bandwidth. Instead of Access Point (AP), Access Gateway (AG) is used to deal with the packet header compression and de-compression from the wireless end. AG's high calculating power is able to reduce the load on AP. In the original architecture, AP has to deal with a large number of demands by header compression/de-compression from mobile terminals. Eventually, wireless networks must offer users "Mobility" and "Roaming". For wireless networks to achieve "Mobility" and "Roaming," we can use Mobile IPv6 (MIPv6) technology. Nevertheless, such technology might cause latency. Furthermore, how the security tunnel and header compression established before the handoff can be used by mobile terminals handoff will be another great challenge. Thus, this paper proposes to solve the problem by using Early Binding Updates (EBU) and Security Access Gateway (SAG) to offer a complete mechanism with low latency, low handoff mechanism calculation, and high security.

Performance Improvement of Channel Access Control Method in Wireless Mesh Networks (무선 메쉬 네트워크에서 성능향상을 위한 채널접속 제어 방법)

  • Lee, Soon-Sik;Yun, Sang-Man;Lee, Sang-Wook;Jeon, Seong-Geun;Kim, Eung-Soo;Lee, Woo-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.572-580
    • /
    • 2010
  • The Wireless Mesh Network uses a wireless communication technology with transmission rates simular to a cable which is used as a backbone networks. The topology structure is in a Mesh form which resembles an Ad-hoc networks. However, a metric is needed in order to set the channel access control method to operate intentions and interior motions are different. In this document, an efficient channel for delivering datas to improve access controls to a wireless mesh networks. The improved performance of the proposed plan is for a hidden and exposed mesh client through an exclusive channels to perform a proposed and analyzed methods.