• Title/Summary/Keyword: Acceleration of Gravity

Search Result 198, Processing Time 0.023 seconds

Prediction of seismic displacements in gravity retaining walls based on limit analysis approach

  • Mojallal, Mohammad;Ghanbari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.247-267
    • /
    • 2012
  • Calculating the displacements of retaining walls under seismic loads is a crucial part in optimum design of these structures and unfortunately the techniques based on active seismic pressure are not sufficient alone for an appropriate design of the wall. Using limit analysis concepts, the seismic displacements of retaining walls are studied in present research. In this regard, applying limit analysis method and upper bound theorem, a new procedure is proposed for calculating the yield acceleration, critical angle of failure wedge, and permanent displacements of retaining walls in seismic conditions for two failure mechanisms, namely sliding and sliding-rotational modes. Also, the effect of internal friction angle of soil, the friction angle between wall and soil, maximum acceleration of the earthquake and height of the wall all in the magnitude of seismic displacements has been investigated by the suggested method. Two sets of ground acceleration records related to near-field and far-field domains are employed in analyses and eventually the results obtained from the suggested method are compared with those from other techniques.

Active contrl of an ambulane\ce stretcher: Simulation study

  • Sagawa, K.;Inooka, H.;Ino-Oka, E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.100-105
    • /
    • 1994
  • In this paper, we discuss a method for design of an ambulance stretcher which call decrease blood pressure fluctuation caused by ambulance acceleration. Recently, a lot of stretchers which can isolate the vertical vibration to reduce body resonances (4-10 Hz) have been used during ambulance transport. However, we have found that blood pressure of a patient laying in the stretcher fluctuates when the ambulance accelerates or decelerates. Since the enforced change of the blood pressure may deteriorate the patent's condition, a stretcher to cancel head-to-foot acceleration and to decrease the blood pressure variation (BPV) is expected for safe transport. We propose a method to design a stretcher which is tilted according to an adequate angle to cancel head-to-foot acceleration by gravity when the ambulance accelerates or decelerates. A control method of the stretcher is constructed by means of simulation analysis using acceleration data measured during ambulance transport. It is confirmed that the active controlled stretcher proposed has good performance for the BPV reduction.

  • PDF

FINDING THE ACCELERATION PARAMETER IN MODIFIED NEWTONIAN DYNAMICS WITH ELLIPTICAL GALAXIES

  • TIAN, YONG;KO, CHUNG-MING
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.381-383
    • /
    • 2015
  • MOdified Newtonian Dynamics (MOND) is an alternative to the dark matter paradigm. MOND asserts that when the magnitude of acceleration is smaller than the acceleration parameter $a_0$, the response of the system to gravity is stronger (larger acceleration) than the one given by Newtonian dynamics. The current value of $a_0$ is obtained mostly by observations of spiral galaxies (rotation curves and the Tully-Fisher relation). We attempt to estimate $a_0$ from the dynamics of elliptical galaxies. We seek elliptical galaxies that act as the lens of gravitational lensing systems and have velocity dispersion data available. We analysed 65 Einstein rings from the Sloan Len ACS survey (SLACS). The mass estimates from gravitation lensing and velocity dispersion agree well with each other, and are consistent with the estimates from population synthesis with a Salpeter IMF. The value of $a_0$ obtained from this analysis agrees with the current value.

Analysis on Stable Grasping based on Three-dimensional Acceleration Convex Polytope for Multi-fingered Robot (3차원 Acceleration Convex Polytope를 기반으로 한 로봇 손의 안정한 파지 분석)

  • Jang, Myeong-Eon;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-104
    • /
    • 2009
  • This article describes the analysis of stable grasping for multi-fingered robot. An analysis method of stable grasping, which is based on the three-dimensional acceleration convex polytope, is proposed. This method is derived from combining dynamic equations governing object motion and robot motion, force relationship and acceleration relationship between robot fingers and object's gravity center through contact condition, and constraint equations for satisfying no-slip conditions at every contact points. After mapping no-slip condition to torque space, we derived intersected region of given torque bounds and the mapped region in torque space so that the intersected region in torque space guarantees no excessive torque as well as no-slip at the contact points. The intersected region in torque space is mapped to an acceleration convex polytope corresponding to the maximum acceleration boundaries which can be exerted by the robot fingers under the given individual bounds of each joints torque and without causing slip at the contacts. As will be shown through the analysis and examples, the stable grasping depends on the joint driving torque limits, the posture and the mass of robot fingers, the configuration and the mass of an object, the grasp position, the friction coefficients between the object surface and finger end-effectors.

Development of a Control Law to Pneumatic Control for an Anti-G Suit (Anti-G 슈트 공압 제어를 위한 제어법칙 개발)

  • Kim, Chong-sup;Hwang, Byung-moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.548-556
    • /
    • 2015
  • The highly maneuverable fighter aircraft such as F-22, F-16 and F-15have the high maneuverability to maximize the combat performance, whereas the high maneuver characteristics might degrade the pilot's mission efficiency due to fatigue's increase by exposing him to the high gravity and, in the worst case, the pilot could face GLOC (Gravity-induced Loss Of Consciousness). The advanced aerospace company has applied the various technologies to improve the pilot's tolerance to the gravity acceleration, in order to prevent the pilot from entering the situation of the loss of consciousness. Especially, the Anti-G Suit(AGS) equipment to protect the pilot against the high gravity in flight could improve the mission success rate by decreasing the pilot's fatigue in the combat maneuver as well as prevent the pilot from facing GLOC. In this paper, a control algorithm is developed and verified to provide an optimal air pressure to AGS according to the gravity increase during the high performance maneuver. This result is expected, as the key technology, to contribute to the KF-X(Korean Fighter eXperimental), project in the near future.

Maximum Height and Velocity of Jumping Car in The Air (공중으로 점프한 차량의 최대 높이 및 속도)

  • Shin, Seong-Yoon;Lee, Hyun-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.55-60
    • /
    • 2012
  • An free-fall object is received only force of gravity. Movement that only accept gravity is free-fall movement, and a free-falling object is free falling body. In other words, free falling body is only freely falling objects under the influence of gravity, regardless of the initial state of objects movement. In this paper, we assume, ignoring the resistance of the air, and the free-fall acceleration by the height does not change within the range of the short distance in the vertical direction. Under these assumptions, we can know about time and maximum height to reach the peak point from jumping vertically upward direction, time and speed of the car return to the starting position, and time and speed when the car fall to the ground. It can be measured by jumping degree and risk of accident from car or motorcycle in telematics.

중력장 가속도, 중력 가속도, 그리고 가속도계 측정값 사이의 관계

  • Lee, Hyeong-Geun
    • ICROS
    • /
    • v.16 no.3
    • /
    • pp.40-45
    • /
    • 2010
  • 물체의 운동을 측정하기 위하여 관성 센서(inertial sensor)에 대한 배경 지식이 없는 사용자가 가속도계(accelerometer)를 사용하고자 할 경우 센서의 이름이 주는 혼동에 의하여 물체의 운동 가속도(acceleration)를 쉽게 얻어낼 수 있으리라 기대하게 된다. 반면, 가속도계가 실제 측정하여 주는 값은 비력 가속도(acceleration due to specific force)에 해당되므로 적절한 처리를 부가하지 않으면 기대한 바와 같이 물체의 운동 가속도를 얻을 수 없다. 가속도계의 측정값으로부터 운동 가속도를 추출하기 위해서는 중력장 가속도 (gravitational acceleration), 중력 가속도 (acceleration due to gravity), 비력 가속도, 그리고 운동 가속도 사이의 관계를 명확하게 구분 이해할 필요가 있다. 본 고에서는 앞선 고들에서 다룬(막대) 벡터, 좌표값, 좌표계, 좌표변환행렬, 그리고 코리올리 효과 등의 개념을 확장하여 다양한 개념의 가속도들을 구분 설명하였다.

Seismic behavior of concrete gravity dams

  • Varughese, Jiji Anna;Nikithan, Sreelakshmi
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.195-206
    • /
    • 2016
  • Dams play a vital role in the development and sustainment in a country. Failure of dams leads to the catastrophic event with sudden release of water and is of great concern. Hence earthquake-resistant design of dams is of prime importance. The present study involves static, modal and transient analyses of dam-reservoir-foundation system using finite element software ANSYS 15. The dam and the foundation are modeled with 2D plane strain element "PLANE 42" and the reservoir by fluid acoustic element "FLUID 29" with proper consideration of fluid-structure interaction. An expression for the fundamental period of concrete dams is developed based on modal analysis. Seismic response of gravity dams subjected to earthquake acceleration is evaluated in terms of peak displacement and stress.

Study on Some Problems in the Measurement and Estimation of 6 Degree of Freedom Head Vibration in Very Low Frequency Range (극 저주파 범위에서의 인체 머리부 6자유도 진동 측정 및 추정시의 문제점에 대한 연구)

  • 이정훈;고홍석;김광준;장한기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.621-626
    • /
    • 2002
  • Two problems in the measurement of 6-DOF head vibration in very low frequency range were investigated in this study. One is how much error was involved in the estimation of three rotational and three translational motion at any specified point from measured 6 translational accelerations. The other is quantitative and qualitative influence of gravity on DC and AC component of the estimated accelerations in 6 degree of freedom, which were derived from pick-ups fixed on a helmet. In the study the effect of nonlinear terms on the estimation of 6 degree of freedom accelerations was negligible but gravity effect must be considered carefully.

  • PDF

Seismic Damage Analysis Of Concrete Gravity Dam Using ABAQUS (ABAQUS 소프트웨어를 이용한 콘크리트 중력댐의 지진손상해석)

  • Shin, Dong-Hoon;Nghia, Nguyen Trong;Park, Han-Gyu;Park, Kyung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.530-533
    • /
    • 2009
  • This study deals with 2D and 3D nonlinear seismic damage analysis of a concrete gravity dam using the finite element program ABAQUS and the concrete damaged plasticity model. 2D and 3D spillway sections of the dam are simulated. First the frequency analysis is conducted to compare the fundamental frequency and estimate the value of damping coefficient. Then the seismic analysis is conducted using the simulated ground acceleration motion. The relative displacement between the crest and bottom of the dam is obtained and compared for the maximum value and occurrence time. The results indicate that the plane-stress assumption gives similar results of maximum relative displacement and final damage distribution with 3D analysis.

  • PDF