• Title/Summary/Keyword: Acceleration of Gravity

Search Result 198, Processing Time 0.025 seconds

Precision Coordinate Transformation and Gravity Acceleration Algorithms (정밀좌표변환 및 중력가속도 계산 알고리듬 분석)

  • Kim, Jeong-Rae;Noh, Jeong-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.30-36
    • /
    • 2011
  • Inertial navigation systems requires gravity model to compute gravity acceleration and its trajectory accuracy depends on the gravity model accuracy especially for a long range flight. The gravity model accuracy is important for satellite orbit prediction as well. The precision gravity model requires a precision coordinate transformation between inertial and Earth fixed coordinates. Precision gravity acceleration algorithms with a coordinate transform are studied and a computer program is developed. The effects of individual model components on trajectory error are analyzed.

Importance of convection during physical vapor transport of Hg2Cl2 in the presence of Kr under environments of high gravitational accelerations

  • Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • Special attention in the role of convection in vapor crystal growth has been paid since some single crystals under high gravity acceleration of $10g_0$ appear considerably larger than those under normal gravity acceleration ($1g_0$). With increasing the gravity acceleration from $1g_0$ up to $10g_0$, the total molar flux for ${\Delta}T$ = 30 K increases by a factor of 4, while for ${\Delta}T$ = 90, by a factor of 3. The maximum molar fluxes for three different gravity levels of $1g_0$, $4g_0$ and $10g_0$, appear approximately in the neighborhood of y = 0.5 cm, and the molar fluxes show asymmetrical patterns, which indicate the occurrence of either one single or more than one convective cell. As the gravitational level is enhanced form $1g_0$ up to $10g_0$, the intensity of convection is increased significantly through the maximum molar fluxes for ${\Delta}T$ = 30 K and 90 K. At $10g_0$, the maximum total molar flux is nearly invariant for for ${\Delta}T$ = 30 K and 90 K. The total molar flux increases with increasing the gravity acceleration, for $1g_0{\leq}g_y{\leq}10g_0$, and decreases with increasing the partial pressure of component B, a noble gas called as Kr (Krypton), $P_B$. The ${{\mid}U{\mid}}_{max}$ is directly proportional to the gravity acceleration for 20 Torr $P_B{\leq}300$ Torr. As the partial pressure of $P_B$ (Torr) decreases from 300 Torr to 20 Torr, the slopes of the ${{\mid}U{\mid}}_{max}s$ versus the gravity accelerations increase from 0.29 sec to 0.54 sec, i.e. by a factor of 2. The total molar flux of $Hg_2Cl_2$ is first order exponentially decayed with increasing the partial pressure of component B, $P_B$ (Torr) from 20 Torr up to 300 Torr.

Theoretical gravity studies on roles of convection in crystal growth of $Hg_2Cl_2$-Xe by physical vapor transport under normal and high gravity environments

  • Kim, Geug-Tae;Kwon, Moo-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.107-115
    • /
    • 2009
  • Particular interest in the role of convection in vapor crystal growth has arisen since some single crystals under high gravity acceleration of $10g_0$ appear considerably larger than those under normal gravity acceleration ($1g_0$). For both ${\Delta}T=60\;K$ and 90 K, the mass flux increases by a factor of 3 with increasing the gravity acceleration from $1g_0$ up to $10g_0$. On the other hand, for ${\Delta}T=30\;K$, the flux is increased by a factor of 1.36 for the range of $1g_0{\leq}g{\leq}10g_0$. The maximum growth rates for $1g_0$, $4g_0$, $10g_0$ appear approximately in the neighborhood of y = 0.5, and the growth rates shows asymmetrical patterns, which indicate the occurrence of either one single or more than one convective cell. The maximum growth rate for $10g_0$ is nearly greater than that for $1g_0$ by a factor of 2.0 at $P_B=20\;Torr$. For three different gravity levels of $1g_0$, $4g_0$ and $10g_0$, the maximum growth rates are greater than the minimum rates by a factor of nearly 3.0, based on $P_B=20\;Torr$. The mass flux increases with increasing the gravity acceleration, for $1g_0{\leq}g_y{\leq}10g_0$, and decreases with increasing the partial pressure of component B, xenon (Xe), $P_B$. The $|U|_{max}$ is directly proportional to the gravity acceleration for $20\;Torr{\leq}P_B{\leq}300\;Torr$. As the partial pressure of $P_B$ (Torr) decreases from 300 Torr to 20 Torr, the slopes of the $|U|_{max}s$ versus the gravity accelerations increase from 0.1 sec to 0.17 sec. The mass flux of $Hg_2Cl_2$ is exponentially decayed with increasing the partial pressure of component B, $P_B$ (Torr) from 20 Torr up to 300 Torr.

A Biodynamic Simulation under High Gravity Maneuvering (고중력 가속기동하에서의 생체동역학적 모의실험)

  • Lee, Chang-Min;Park, Sei-Kwon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 1992
  • The purpose of this paper is to investigate the dynamic situation of the biomechanical responses of a pilot that occur before the black out during high gravity maneuvering. The computer biodynamic simulations using the Articulated Total Body(ATB) model show the following results : 1) the center of gravity(c. g) offsets of a helmet have significant effects on the head deflection angle which is closely connected with the head down : 2) the average and maximum gravity forces are smaller in the curvilinear type of an acceleration than in the straight type of the acceleration, and it is applied to the case of the head deflection angle. We suggest that the new concept of protective device should be necessary to prevent the head down during high gravity maneuvering.

  • PDF

A Biomechanical Study on Kinetic Posture, Center-of-Gravity, Acceleration and their Effects on the Maximum Capability of Weight-lifting (역도경기의 자세, 무게중심, 가속도가 발휘근력에 미치는 영향에 관한 생체역학적 연구)

  • Lee, Myeon-U;Jeong, Gyeong-Ho;Han, Seong-Ho;Lee, Geung-Se;Lee, Chun-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.2
    • /
    • pp.87-99
    • /
    • 1985
  • The purpose of this study is to analyze the changes in centers-of-gravity (COG), acceleration and body posture and their associated effects both on EMG and on the maximum capability of weight lifting during Clean & Jerk and Snatch motions. Displacement, velocity, acceleration of joints were obtained from film analysis. Also levels of exertions on 11 major muscle groups were obtained from EMG analysis during a lifting cycle. The EMG data were measured from Telemetry System which is useful in field experiments. Magnitude and direction of force, change in center-of-gravity were extracted from COG data which were measured from force platform. The results of this study can be to be useful both to coaches and to athletes in weight-lifting.

  • PDF

Characteristics of the Momentum Equation in Open Channel Flow (개수로흐름 해석에서 운동량방정식의 특성)

  • Jeon, Min-Woo;Cho, Yong-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1111-1115
    • /
    • 2008
  • The relative magnitudes of the individual terms of the momentum equation are analyzed and compared by the analytical methods in open channel flow. The temporal variations of each term(local acceleration term, convective acceleration term, pressure force term, gravity force term, and friction force term) are analyzed for the influence factors to runoff expressed by the parameters of the momentum equation, stream slopes and roughness coefficients. The magnitudes of each term vary with the channel characteristics, especially when the roughness coefficients are dominant or for the mild stream slopes the pressure term can not be negligible. As a result of the characteristics of momentum equation in open channel flow, the acceleration terms are very small compared with the other terms. The magnitudes of local acceleration and convective acceleration offsets each other. The peak time of each term except the gravity term coincides with inflection point of the hydrograph rising limb each other.

  • PDF

Statics variation analysis due to spatially moving of a full ocean depth autonomous underwater vehicle

  • Jiang, Yanqing;Li, Ye;Su, Yumin;Cao, Jian;Li, Yueming;Wang, Youkang;Sun, Yeyi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.448-461
    • /
    • 2019
  • Changes in gravity and buoyancy of a Full Ocean Depth Autonomous Underwater Vehicle (FOD-AUV) during its descending and ascending process must be considered very carefully compared with a Human Occupied Vehicle (HOV) or a Remotely Pperated Vehicle (ROV) whose activities rely on human decision. We firstly designed a two-step weight dropping pattern to achieve a high descending and ascending efficiency and a gravity-buoyancy balance at designed depth. The static equations showed that gravity acceleration, seawater density and displacement are three key aspects affecting the balance. Secondly, we try our best to analysis the gravity and buoyancy changing according to the previous known scientific information, such as anomaly of gravity acceleration, changing of seawater states. Finally, we drew conclusion that gravity changes little (no more than 0.1kgf, it is impossible to give a accurate value). A density-depth relationship at the Challenger Deep was acquired and the displacement changing of the FOD-AUV was calculated preciously.

Evidence for galaxy dynamics tracing background cosmology below the de Sitter scale of acceleration

  • van Putten, Maurice H.P.M
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.55.5-56
    • /
    • 2017
  • Galaxy dynamics probes weak gravity at accelerations below the de Sitter scale of acceleration adS = cH, where c is the velocity of light and H is the Hubble parameter. Low and high redshift galaxies hereby offer a novel probe of weak gravity in an evolving cosmology, satisfying H(z) = H0(1 + A(6z + 12z^2 +12z^3+ 6z^4+ (6/5)z^5)/(1 + z) with baryonic matter content A sans tension to H0 in surveys of the Local Universe. Galaxy rotation curves show anomalous galaxy dynamics in weak gravity aN < adS across a transition radius r beyond about 5 kpc for galaxy mass of 1e11 solar mass. where aN is the Newtonian acceleration based on baryonic matter content. We identify this behavior with a holographic origin of inertia from entanglement entropy, that introduces a C0 onset across aN=adS with asymptotic behavior described by a Milgrom parameter satisfying a0=omega/(2pi), where omega=sqrt(1-q)H is a fundamental eigenfrequency of the cosmological horizon. Extending an earlier confrontation with data covering 0.003 < aN/adS < 1 at redshift z about zero in Lellie et al. (2016), the modest anomalous behavior in the Genzel et al. sample at redshifts 0.854 < z <2.282 is found to be mostly due to clustering 0.36 < aN/adS < 1 close to the C0 onset to weak gravity and an increase of up to 65% in a0.

  • PDF

Development of Tutorial for Measuring Gravity Acceleration Using Arduino and Its Educational Application (아두이노를 활용한 중력 가속도 측정과 관련된 튜토리얼 및 교육적 활용 방안)

  • Kim, Hyung-Uk;Mun, Seong-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.69-77
    • /
    • 2022
  • Physical experiment through MBL has been used in many schools for a long time since students can check the experiment results immediately and conduct the experiment easily. However, conducting the experiment, not knowing the principle of the device or simply concentrating on the derived data has been raised as the problem of MBL experiment. To supplement this problem, this study measured the acceleration of gravity with the picket fence method, which is often used in MBL experiment, utilizing Arduino, calculated the error rate through a comparison to the actual acceleration of gravity and discussed the educational application of the experiment to measure it. As a result of the experiment, the error rate between the acceleration of gravity calculated by the experiment and the actual acceleration of gravity was about 1%, so it turned out that relatively accurate measurements were possible. Also, the sample mean of the experimental value was included in the confidence interval of 95%, so it could be concluded that it was a significant experiment. In addition, this study showed the possibility of the educational application of the experiment to measure it through the following: It can supplement the structural disadvantages of MBL; it can consider the interaction between Physics and Math; it is possible to converge with information course in STEAM education; and it is inexpensive to be equipped with the equipment. Hopefully, the physical experiment utilizing Arduino will further be revitalized in science gifted education based on this study.

Unrestricted Measurement Method of Three-dimensional Walking Distance Utilizing Body Acceleration and Terrestrial Magnetism

  • Inooka, Hikaru;Kim, HiSik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.5-94
    • /
    • 2001
  • Unrestricted measurement method of three-dimensional walking distance utilizing body acceleration and terrestrial magnetism is discussed. The three-dimensional walking distance is derived by the integration of the three dimensional acceleration of foot during swing phase. Since the sensor system attached on the foot rotates during swing phase, the acceleration data measured on the foot include acceleration of gravity which causes inaccurate calculation of the velocity and the distance. Three gyros are used to compensate the rotation of the sensor system. Moreover, one geomagnetic sensor is employed to derive the heading direction of the subject Healthy volunteers performed ...

  • PDF