• Title/Summary/Keyword: Acceleration life test

Search Result 197, Processing Time 0.029 seconds

Suggested Accelerated Life Test Method of SMPS for Outdoor Lighting LED (실외조명 LED용 SMPS의 가속수명시험법 제안)

  • Lim, Seong-Yong;Hyong, Jae-Phill;Lim, Hong-Woo;Oh, Geun-Tae
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.8-19
    • /
    • 2018
  • Purpose: This study has developed the accelerated lifetime test method for smps for outdoor lighting LED through two factors of temperature and humidity. Methods: Acceleration condition was confirmed for each stress and model, and acceleration life test model was estimated according to acceleration condition. Results: As a result of confirming the accelerated life test model, in the case of humidity, acceleration was established only in the foreign products. Therefore, it is confirmed that the acceleration condition is insufficient. However, the estimated parameters for temperature are relatively constant. It is therefore suitable for power supply acceleration tests for outdoor lighting LEDs. Conclusion: The SMPS acceleration test for outdoor lighting LED can improve the availability of the product by developing an accelerated life test method that guarantees the reliability of the product.

Acceleration Life Prediction of the Capacitor on a Traction Inverter for a High-Speed Train (고속철도차량용 견인 인버터 커패시터의 가속수명 예측)

  • Maeng, Heeyoung;Jung, Si-Kyo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.653-659
    • /
    • 2015
  • The aim of this study is to develop a technique for the accelerated life test of the capacitor in a propulsion control device of a traction inverter used for a high-speed train. Using this technique, the accelerated life test can possibly estimate the life cycle of a capacitor under various temperature conditions and irregularly applied voltage. The accelerated life test is conducted for the capacitor of the traction inverter. The common proceedings of this test are selection of failure mechanism, determination of accelerated stress, range determination of the accelerated stress, determination of the test condition, and distribution and determination of the sample. From this result, the continuous applied voltage was not considered for the acceleration factors anymore. Therefore, the final result having an acceleration factor of 9.4 (= 13,626/1,445) was observed. Furthermore, the life-shortening acceleration effect for the irregular applied voltage condition can be applied to various situations.

Characteristics and Useful Life Prediction of Rubber Spring for Railway Vehicle (전동차용 방진고무스프링 특성 및 사용수명 예측)

  • Woo, Chang-Su;Park, Hyun-Sung;Park, Dong-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.211-216
    • /
    • 2007
  • Rubber components are widely used in many application such as vibration isolators, damping, ride quality. Rubber spring is used in primary suspension system for railway vehicle. Characteristics and useful life prediction of rubber spring was very important in design procedure to assure the safety and reliability. Non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by physical tests which are uniaxial tension, equi-biaxial tension and pure shear test. The computer simulation was executed to predict and evaluate the load capacity and stiffness for rubber spring. In order to investigate the useful life, the acceleration test were carried out. Acceleration test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful life prediction for rubber spring were proposed.

Evaluation of Characteristics and Useful Life of Rubber Spring for Railway Vehicle

  • Woo, Chang-Su;Park, Hyun-Sung;Park, Dong-Chul
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.122-127
    • /
    • 2008
  • Rubber components are widely used in many application such as vibration isolators, damping, ride quality. Rubber spring is used in primary suspension system for railway vehicle. Characteristics and useful life prediction of rubber spring was very important in design procedure to assure the safety and reliability. Non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by physical tests which are uniaxial tension, equi-biaxial tension and pure shear test. The computer simulation was executed to predict and evaluate the load capacity and stiffness for rubber spring. In order to investigate the useful life, the acceleration test were carried out. Acceleration test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful life prediction for rubber spring were proposed.

  • PDF

Investigation into the Worst Stress Condition for an Accelerated Life Test of a Compressor in Refrigerators - Acceleration Factor and the Reducible Test Time under Low Temperature - (냉장고용 압축기의 가속수명시험을 위한 가혹조건 탐색 - 저온 가혹조건에서의 가속계수와 단축 시험기간 -)

  • Jung, Y.M.;Joo, W.J.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.43-48
    • /
    • 2012
  • Generally accelerated life test is well known as one method to reduce reliability qualification test period. This test is conducted under the higher stress condition than normal condition. So it can save the test time by calculating the acceleration factor from the relationship between the worst stress condition and normal condition. This paper investigates the worst stress condition for the accelerated life test to increase the acceleration factor. Especially, we focused on the method to obtain effective acceleration factors under the worst stress condition. Moreover, we considered how to decide the worst stress condition by looking for the operating limit of this system. The acceleration factor can be estimated from the ratio of the kinematic viscosity in the normal condition and the worst stress condition, the lowest temperature, by using Arrhenius relationship. Through some experiments for a refrigerator's compressor, we were able to confirm how to increase acceleration factors and how to reduce the reliability qualification test period with minimum samples.

Development of Life Test Specification for Catalytic Gas Sensor (접촉연소식 가스센서의 수명시험기준 개발)

  • Kang Jun-Ku;Park Jung-Won;Hwang Dong-Hoon;Ham Jung-Keol
    • Journal of Applied Reliability
    • /
    • v.6 no.1
    • /
    • pp.37-50
    • /
    • 2006
  • The accelerated life tests of the catalytic gas sensor were performed at three different gas concentration conditions. From the test data, the power-Weibull model was estimated and the acceleration factor between test condition 25%LEL(Lowe Explosive Limit) and use condition 5%LEL was about 3 according to this acceleration model. Using this acceleration factor, life test specification for qualifying that B10 lifetime of the catalytic gas sensor meets the goal lifetime (5 years) was designed.

  • PDF

DEVELOPMENT OF AN ACCELERATED LIFE TEST PROCEDURE FOR COOLING FAN MOTORS

  • Shin, W.G.;Lee, S.H.;Song, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.757-762
    • /
    • 2006
  • Reliability of automotive parts has been one of the most interesting fields in the automotive industry. Especially, a small DC motor was issued because of the increasing adoption for passengers' safety and convenience. For several years, small DC motors have been studied and some problems of a life test method were found out. The field condition was not considered enough in the old life test method. It also needed a lot of test time. For precise life estimation and accelerated life test, new life test procedure was developed based on measured field condition. The vibration condition on vehicle and latent force on fan motor shaft were measured and correlated with each other. We converted the acceleration data into the load data and calculated the equivalent load from integrated value. We found the relationship which can be used for accelerated life test without changing the severity by using different loading factors.

Investigation into the Worst Stress Condition for an Accelerated Life Test of a Compressor in Refrigerators - Acceleration Factor and the Reducible Test Time under High Temperature - (냉장고용 압축기의 가속수명시험을 위한 가혹조건 탐색 - 고온 가혹조건에서의 가속계수와 단축 시험기간 -)

  • Jung, Y.M.;Joo, W.J.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.44-50
    • /
    • 2012
  • The reliability qualification test is essential in order to ensure the life time of the product under the normal operation conditions when a new product is developed. The reliability qualification test period has an important impact on the development time of new product. Therefore, some researches to reduce the test time of reliability qualification test have been actively studied. Generally, accelerated life test is well known as one method that can save the test time of the reliability qualification test. This test is conducted under the higher stress condition than normal condition. So we need to investigate what factor affects to the higher stress condition. This paper shows the relationship between the acceleration factor and reliability qualification test period. Especially, we focused on the method to obtain effective acceleration factors under the high temperature condition. Through some experiments for a refrigerator's compressor, we were able to confirm how to increase acceleration factors and how to reduce the reliability qualification test period with minimum samples.

A Study on Accelerated Life Test of Halogen Lamps for Medical Device (의료용 할로겐램프의 가속수명시험에 관한 연구)

  • Jung, Jae Han;Kim, Myung Soo;Lim, Heonsang;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.659-672
    • /
    • 2013
  • Purpose: The purpose of this study was to estimate life time of halogen lamps and acceleration factors using accelerated life test. Methods: Voltage was selected as an accelerating variable through the technical review about failure mechanism. The test was performed at 14.5V, 15.5V and 16.5 for 4,471 hours. It was assumed that the lifetime of Halogen lamps follow Weibull distribution and the inverse power life-stress relationship models. Results: Mean lifetimes of pin and screw types were 19,477 hours and 6,056 hours, respectively. In addition, acceleration factor of two items are calculated as 4.8 and 2.2 based on 15.5V, respectively. Conclusion: The life-stress relationship, acceleration factor, and MTTF at design condition are estimated by analyzing the accelerated life test data. These results suggest that voltage was very important factor to accelerate life time in the case of halogen lamps and the life time of pin type is three times longer than screw type lamps.

The Study on the Acceleration Factor of Coastal Outdoor Corrosion test, Salt Spray Test and Accelerated Corrosion Test using 0.5wt% carbon steel (0.5wt% 탄소강을 이용한 해안 야외부식시험과 염수분무시험, 가속부식시험의 가속계수에 대한 연구)

  • Cho, E.Y.;Gwon, G.B.;Cho, D.H.;Kim, J.Y.
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.209-214
    • /
    • 2013
  • In the industry, accelerated corrosion test is used for the life time prediction. When anti-corrosion test proceeds in real environments, it is difficult that we predict and evaluate the corrosion life time because of the long test time such as 10 years or more time. Accelerated corrosion test and Salt spray test are able to test corrosion life time of products in the laboratory instead of outdoor corrosion test. Experimental procedure is selected for the corrosion standard specimen, exposure of the specimens, measurements of the mass loss and evaluating the mass loss data. As a result, the acceleration factor of the accelerated corrosion test to the outdoor corrosion test is 414.8. Therefore we can predict the corrosion life time of carbon steel during a short time period.