• 제목/요약/키워드: Acceleration lane

검색결과 76건 처리시간 0.024초

DEVELOPMENT OF MATDYMO(MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) II: DEVELOPMENT OF VEHICLE AND DRIVER AGENT

  • Cho, K.Y.;Kwon, S.J.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.145-154
    • /
    • 2006
  • In the companion paper, the composition and structure of the MATDYMO (Multi-Agent for Traffic Simulation with Vehicle Dynamic Model) were proposed. MATDYMO consists of the road management system, the vehicle motion control system, the driver management system, and the integration control system. Among these systems, the road management system and the integration control system were discussed In the companion paper. In this paper, the vehicle motion control system and the driver management system are discussed. The driver management system constructs the driver agent capable of having different driving styles ranging from slow and careful driving to fast and aggressive driving through the yielding index and passing index. According to these indices, the agents pass or yield their lane for other vehicles; the driver management system constructs the vehicle agents capable of representing the physical vehicle itself. A vehicle agent shows its behavior according to its dynamic characteristics. The vehicle agent contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation is conducted for an interrupted flow model and its results are verified by comparison with the results from a commercial software, TRANSYT-7F. The interrupted flow model simulation is implemented for three cases. The first case analyzes the agents' behaviors in the interrupted flow model and it confirms that the agent's behavior could characterize the diversity of human behavior and vehicle well through every rule and communication frameworks. The second case analyzes the traffic signals changed at different intervals and as the acceleration rate changed. The third case analyzes the effects of the traffic signals and traffic volume. The results of these analyses showed that the change of the traffic state was closely related with the vehicle acceleration rate, traffic volume, and the traffic signal interval between intersections. These simulations confirmed that MATDYMO can represent the real traffic condition of the interrupted flow model. At the current stage of development, MATDYMO shows great promise and has significant implications on future traffic state forecasting research.

대형트럭 프레임의 결합방법에 따른 비틀림 특성이 동적 성능에 미치는 영향 (The Effects of Torsional Characteristics according to Mounting Method of the Frame of a Large-sized Truck on Dynamic Performance)

  • 문일동;김병삼
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.731-737
    • /
    • 2005
  • This paper evaluates dynamic performance of a cab over type large-sized truck for estimating the effects of frame's torsional characteristics using a computer model. The computer model considers two mounting methods of frame, flange mounting and web mounting. Frame is modeled by finite elements using MSC/NASTRAN In order to consider the flexibility of frame. The torsional test of the frame is conducted In order to validate the modeled finite element model. A load cell is used to measure the load applied to the frame. An angle sensor is used to measure the torsional angle. An actuator is used to apply a load to the frame. To estimate the effects of frame's torsional characteristics on dynamic performance, simulations are performed with the flange mounting and web mounting frame. Simulation results show that the web mounting frame's variations of roll angle, lateral acceleration, and yaw rate are larger than the flange mounting frame's variations, especially in the high velocity and the second part of the double lane course.

고속도로 합류점 주행을 위한 강건 모델 예측 기법 기반 자율주행 차선 변경 알고리즘 개발 (Automated Driving Lane Change Algorithm Based on Robust Model Predictive Control for Merge Situations on Highway Intersections)

  • 채흥석;정용환;민경찬;이명수;이경수
    • 대한기계학회논문집A
    • /
    • 제41권7호
    • /
    • pp.575-583
    • /
    • 2017
  • 본 논문에서는 고속도로의 합류지점 상황에서 자율주행을 위한 운전 모드 결정 알고리즘의 개발 및 평가를 진행하였다. 합류 상황을 위한 자율주행 알고리즘 개발에 있어 적절하게 합류를 결정하는 운전 모드 결정이 필수적이다. 운전자 모드는 총 2가지로 차선 유지, 차선 변경(합류)이다. 합류 모드 결정은 주변 차량의 정보 및 합류 차선에 남은 거리를 기반으로 결정된다. 합류 모드 결정 알고리즘에서는 합류 가능 여부를 판단하고 합류가 가능할 때, 안전하고 빠르게 합류하기 위한 최적의 위치를 찾는다. 안전 주행 영역은 주변 차량의 정보 및 주행 모드를 기반으로 정의된다. 안전 주행 영역으로 자율주행 차량을 유지하기 위한 조향각과 종방향 가속도를 얻기 위해 여러 제한 조건이 더해진 강건 모델 예측기법이 사용되었다. 본 논문에서 제안된 알고리즘은 컴퓨터 시뮬레이션을 이용해 검증되었다.

4가지 종류의 좌측 핸드 컨트롤 장치에 대한 사용자의 EMG 분석 및 운전 성능 평가 (Analysis of EMG Activities and Driving Performance for Operating Four Types of Left Hand Control Devices)

  • 송정헌;김용철
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권4호
    • /
    • pp.143-152
    • /
    • 2017
  • The main purpose of this research was to examine the EMG characteristics of driver's upper limb and driving performance for operating accelerator and brake pedal by using four types of left hand control devices(Push/Pull, Push/Right angle, Push/Rock, Push/Twist) during simulated driving. The persons with disabilities in the lower extremity have problems in operation of the vehicle because of functional impairments for controlling accelerator and brake pedal. Therefore, if hand control device is used for adaptive driving controls in persons with lower extremity loss, the disabled people could improve their quality of mobility life by driving a car. Twenty subjects were involved in this research to assess driving performance and EMG activities for operating accelerator and brake pedal by using four types of left hand controls in driving simulator. We measured EMG responses of six muscles(posterior deltoid, middle deltoid, biceps, triceps, extensor carpi radialis, and flexor carpi radialis) during pulling and pushing movement with four types of left hand controls for acceleration and braking. STISim Drive 3 program was used for evaluation test of four types of left hand control devices in straight lane course for time to reach target speed and brake reaction time. While operating the four types of left hand controls for acceleration, EMG activities of posterior deltoid in normal subjects were significantly increased(p < 0.05) compared to the disabled subjects. It was also found that EMG responses of triceps and posterior deltoid were significantly increased(p < 0.05) when using the Push/Right angle type than Push/Pull type. While operating the four types of left hand controls for braking, EMG activities of flexor carpi radialis and triceps in subjects with disability were significantly increased(p < 0.05) compared to the normal subjects. It was shown that muscle responses of posterior deltoid, middle deltoid and triceps were significantly increased when using the Push/Right angle type than Push/Rock type. Time to reach target speed and brake reaction time in subjects with disability was increased by 2.5% and 4.6% on average compared to normal subjects. The person with disabilities showed a tendency to relatively slow performance in acceleration at the straight lane course.

차량 시뮬레이터 접목을 위한 실시간 인체거동 해석기법 (Real-Time Analysis of Occupant Motion for Vehicle Simulator)

  • 오광석;손권;최경현
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.969-975
    • /
    • 2002
  • Visual effects are important cues for providing occupants with virtual reality in a vehicle simulator which imitates real driving. The viewpoint of an occupant is sensitively dependent upon the occupant's posture, therefore, the total human body motion must be considered in a graphic simulator. A real-time simulation is required for the dynamic analysis of complex human body motion. This study attempts to apply a neural network to the motion analysis in various driving situations. A full car of medium-sized vehicles was selected and modeled, and then analyzed using ADAMS in such driving conditions as bump-pass and lane-change for acquiring the accelerations of chassis of the vehicle model. A hybrid III 50%ile adult male dummy model was selected and modeled in an ellipsoid model. Multibody system analysis software, MADYMO, was used in the motion analysis of an occupant model in the seated position under the acceleration field of the vehicle model. Acceleration data of the head were collected as inputs to the viewpoint movement. Based on these data, a back-propagation neural network was composed to perform the real-time analysis of occupant motions under specified driving conditions and validated output of the composed neural network with MADYMO result in arbitrary driving scenario.

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.

사고기록장치를 이용한 교통사고재현에 관한 신뢰성 연구 (A Reliable Study on the Accident Reconstruction using Accident Data Recorder)

  • 백세룡;조정권;박종진;임종한
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.179-187
    • /
    • 2014
  • 사고기록장치는 사고 전 후의 차량의 상태 및 운동 정보를 기록하는 장치로 객관적인 사고분석과 실사고 데이터를 이용한 자동차 안전장비의 개발을 위해 교통사고 조사기관과 부품개발사에서 많은 관심을 보이고 있다. 본 연구는 사고기록장치의 출력데이터를 이용한 교통사고재현을 통해 객관적, 과학적 사고분석에 목적을 두고, 더블레인 체인지 테스트 6회 슬라롬 테스트 1회의 실차 주행시험 및 시뮬레이션을 진행하였다. 실차시험을 통하여 취득한 차량의 속도, 종 횡방향 가속도, 조향각, 주행경로 등의 정보를 이용하여 교통사고 재현 및 분석 프로그램인 PC-Crash로 시뮬레이션을 진행하였다. 시뮬레이션은 가속도-조향각 입력방법과 가속도-주행경로 입력방법으로 2회 진행하였으며, 실차시험 결과와 2가지 시뮬레이션의 결과를 비교하여 최적의 경로 재현성을 갖는 분석방법을 도출하였다.

복합모델 다차량 추종 기법을 이용한 차량 주행 제어 (Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm)

  • 문일기;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가 (Development and Performance Evaluation of ESP Systems for Enhancing the Lateral Stability During Cornering)

  • 부광석;송정훈
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1276-1283
    • /
    • 2006
  • This study proposes two ESP systems which are designed to enhance the lateral stability of a vehicle. A BESP uses an inner rear wheel braking pressure controller, while a EBESP employs an inner rear wheel and front outer wheel braking pressure controller. The performances of the BESP and EBESP are evaluated for various road conditions and steering inputs. They reduce the slip angle and eliminate variation in the lateral acceleration, which increase the controllability and stability of the vehicle. However EBESP enhances the lateral stability and comfort. A driver model is also developed to control the steer angle input. It shows good performances because the vehicle tracks the desired lane very well.

다차량 추종 적응순항제어 (Multi-Vehicle Tracking Adaptive Cruise Control)

  • 문일기;이경수
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.