• 제목/요약/키워드: Acceleration lane

검색결과 76건 처리시간 0.022초

양방향 2차선 도로의 지체시간 산정 모형의 개발 (Development of a Delay Estimation Model for Two-Lane Highway)

  • 황경수;최재성
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1998년도 제34회 추계 학술발표회
    • /
    • pp.298-298
    • /
    • 1998
  • The delay on two-lane, Two-way roads is a very important factor which tends to cause relatively high driver loads and too much delay often leads to traffic accidents. In this study a generalized form of delay estimation model was developed based on constant slow moving vehicle speeds, 100% no-passing zone, and flat terrain highway sections. To validate the model, a comparison was made with John Morrall's SMV(Slow Moving Vehicle)model as well as with TWOPAS model. Also a sensitivity analysis was performed to check accuracy of the model. It was found that the model was easy to apply and yet provided reasonable results for experimental conditions specified in the study. It was recommended that speed calculation procedure of the model be improved by further studies, so that the effect of speed acceleration or deceleration according to highway geometries on delay could be analyzed more accurately.

  • PDF

A Simple Approach for Determining No-Passing Zones in Two-Lane Rural Highways

  • Son, Bong-Soo
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1998년도 Proceedings The 4th International Transport Symposium
    • /
    • pp.141-151
    • /
    • 1998
  • Provision of Passing Sight Distance (PSD) is an important component in two-lane highway design and has a critical impact on capacity of highway and safety of drivers. Many models have been developed to estimate PSD reasonably. However, each of them has a number of shortcomings for reflecting the real traffic conditions. This paper introduces a revised model that reflects the characteristics of the passing maneuver. The changes in passing sight distances under different assumptions about acceleration and vehicle length, which are related to vehicle types, are presented. The results obtained by the revised model are compared with those obtained from the existing models. There is an important link between geometric design decisions which determine the available sight distance and the quality of service which the road provides. In this paper, we examine one aspect of this relationship. That is to determine whether the passing sight distance is provided by improving horizontal alignment for a specific roadway section or passing may be restricted to save the road construction cost. To do so, a simple method for estimating traffic delay in no-passing is introduced.

  • PDF

휠 슬립에 강건한 확장칼만필터 기반 차량 상태 추정 (Vehicle State Estimation Robust to Wheel Slip Using Extended Kalman Filter)

  • 전명근;조아라;이경수
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.16-20
    • /
    • 2022
  • Accurate state estimation is important for autonomous driving. However, the estimation error increases in situations that a lot of longitudinal slip occurs. Therefore, this paper presents a vehicle state estimation method using an Extended Kalman Filter. The filter estimates the states of the host vehicle robust to wheel slip. It utilizes the measurements of the four-wheel rotational speeds, longitudinal acceleration, yaw-rate, and steering wheel angle. Nonlinear measurement model is represented by Ackermann Model. The main advantage of this approach is the accurate estimation of yaw rate due to the measurement of the steering wheel angle. The proposed algorithm is verified in scenarios of autonomous emergency braking (AEB), lane change (LC), lane keeping (LK) using an automated vehicle. The results show that the proposed algorithm guarantees accurate estimation in such scenarios.

능동 현가장치가 차량의 핸들링에 미치는 영향에 관한 연구 (A study on the effects of active suspension upon vehicle handling)

  • 이중섭;권혁조;오재윤
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.603-610
    • /
    • 1998
  • This paper develops a 7 DOF vehicle model to study the effects of the active suspension on ride. The model is used to derive a control law for the active suspension using a full state linear optimal control technique. A wheelbase preview type active suspension is also considered in the control law derivation. The time delay between wheelbases is approximated using Pade approximation technique. The ride model is extended to a 14 DOF handling model. The 14 DOF handling model includes lateral, longitudinal, yaw and four wheel spin motions in addition to the 7 DOF ride model. A control law which is derived considering only ride related parameters is used to study the effects of the active suspension on a vehicle handling. J-turn maneuver simulation results show that the active suspension has a slower response in lateral acceleration and yaw rate, a bigger steady state lateral acceleration and an oversteer tendency. Lane changing maneuver simulation results show that the active suspension has a little bigger lateral acceleration but a much smaller roll angle and roll motion. Braking maneuver simulation results show that the active suspension has a much smaller pitch angle and pitch motion.

고속도로 졸음쉼터 제원 산정 및 설계기준 정립에 관한 연구 (Development of Specifications and Design Criteria of Rest Area for Drowsy Drivers)

  • 오석진;박제진;홍정표;하태준
    • 대한토목학회논문집
    • /
    • 제37권2호
    • /
    • pp.397-407
    • /
    • 2017
  • 본 연구는 고속도로 졸음쉼터 현황 조사 및 문제점 도출을 통해 졸음쉼터의 제원 산정 및 설계기준 수립을 위한 개선안 제시를 목적으로 한다. 고속도로 졸음쉼터 진입부를 감속변이구간, 감속차로, 진입연결로로 분류하고, 진출부는 진출연결로, 가속차로, 가속변이구간으로 분류하여 차량의 본선 주행속도, 진출입연결로의 시 종점부 주행속도, 감속도 및 가속도 등을 고려하여 구간별 적정길이를 산정하였다. 또한 졸음쉼터 주차부를 주차형태, 횡단구성 주차공간의 길이 등으로 구분하고, 실제 졸음쉼터를 이용하는 차량의 이용률, 중차량 비율, 졸음쉼터 내 설계속도 등을 고려하여 합리적인 설계기준을 정립하였다. 본 연구를 통해 제시된 고속도로 졸음쉼터 설계기준은 향후 졸음쉼터 계획 및 재정비 시 유용하게 활용될 수 있을 것으로 판단된다. 또한, 고속도로 졸음쉼터의 규정 및 산정 결과를 고려한 졸음쉼터의 설치기준 정립은 휴게시설 및 고속도로 교통사고 예방은 물론 이용률 증가 및 안전성 측면의 향상을 가져올 것으로 판단된다.

Driving Performance of Adaptive Driving Controls using Drive-by-Wire Technology for People with Disabilities

  • Kim, Younghyun;Kim, Yongchul
    • 대한인간공학회지
    • /
    • 제35권1호
    • /
    • pp.11-27
    • /
    • 2016
  • Objective: The purpose of this study was to develop and evaluate high technology adaptive driving controls, such as mini steering wheel-lever system and joystick system, for the people with physical disabilities in the driving simulator. Background: The drivers with severe physical disabilities have problems in operation of the motor vehicle because of reduced muscle strength and limited range of motion. Therefore, if the remote control system with driver-by-wire technology is used for adaptive driving controls for people with physical limitations, the disabled people can improve their quality of life by driving a motor vehicle. Method: We developed the remotely controlled driving simulator with drive-by-wire technology, e.g., mini steering wheel-lever system and joystick system, in order to evaluate driving performance in a safe environment for people with severe physical disabilities. STISim Drive 3 software was used for driving test and the customized Labview program was used in order to control the servomotors and the adaptive driving devices. Thirty subjects participated in the study to evaluate driving performance associated with three different driving controls: conventional driving control, mini steering wheel-lever controls and joystick controls. We analyzed the driving performance in three different courses: straight lane course for acceleration and braking performance, a curved course for steering performance, and intersections for coupled performance. Results: The mini steering wheel-lever system and joystick system developed in this study showed no significant statistical difference (p>0.05) compared to the conventional driving system in the acceleration performance (specified speed travel time, average speed when passing on the right), steering performance (lane departure at the slow curved road, high-speed curved road and the intersection), and braking performance (brake reaction time). However, conventional driving system showed significant statistical difference (p<0.05) compared to the mini steering wheel-lever system or joystick system in the heading angle of the vehicle at the completion point of intersection and the passing speed of the vehicle at left turning. Characteristics of the subjects were found to give a significant effect (p<0.05) on the driving performance, except for the braking reaction time (p>0.05). The subjects with physical disabilities showed a tendency of relatively slow acceleration (p<0.05) at the straight lane course and intersection. The steering performance and braking performance were confirmed that there was no statistically significant difference (p>0.05) according to the characteristics of the subjects. Conclusion: The driving performance with mini steering wheel-lever system and joystick control system showed no significant statistical difference compared to conventional system in the driving simulator. Application: This study can be used to design primary controls with driver-by-wire technology for adaptive vehicle and to improve their community mobility for people with severe physical disabilities.

도시고속도로 공사구간의 적정 완화구간 길이 산정 (The Proper Length of Transition Area for Work Zones on Urban Freeways)

  • 이미리;이청원;김도경
    • 대한교통학회지
    • /
    • 제31권4호
    • /
    • pp.58-66
    • /
    • 2013
  • 도시고속도로는 교통량이 많고 주행속도가 높아 도로점용 공사 시 교통사고 위험 뿐만 아니라 차로 수 감소, 차로 변경, 가감속 등의 증가로 마찰이 증대되어 교통정체를 야기한다. 본 연구는 공사구간을 효율적으로 운영관리 하기 위해서 이동성과 안전성의 두 가지 측면을 만족하는 공사구간 적정 완화구간 길이 산정을 목적으로 한다. 분석을 위해 차로수별 3가지 시나리오를 구성하였고, 각 시나리오별로 완화구간 길이를 100-500m까지 100m 간격으로 변화시키며 적정 완화구간 길이를 결정하였다. 그 결과, 편도 3, 4차로 도로의 1차로 점용 공사 시 300m, 편도 2차로 도로의 1차로 점용 공사 시 200m로 나타났다. 편도 차로 수에 따라 동일한 완화구간 길이로 운영하는 것보다는 차로 수에 따라 다르게 운영하는 것이 우수하다는 결과를 도출하였다.

비선형 차량모델 모의 실험의 경로제어 (PATH CONTROL FOR NONLINEAR VEHICLE MODELS)

  • J.N. Lee
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.383-387
    • /
    • 1996
  • This paper presents a steering control strategy applicable to vehicle path following problems. This control strategy is based on realistic nonlinear equations of motion of multibody systems described in terms of relative joint coordinates. The acceleration of the steering angle is selected as a control input of the system. This input is obtained by considering position and slope errors at current and at advance times. This steering control strategy is tested in circular and lane change maneuvers with a nonlinear vehicle model.

  • PDF

연속류도로 합류영향구간 교통류 난류현상 분석 (Analysis of Turbulence on a Merge Influence Section in Uninterrupted Facility)

  • 김현상;도철웅
    • 한국도로학회논문집
    • /
    • 제11권2호
    • /
    • pp.217-228
    • /
    • 2009
  • 연속류도로 합류영향구간에서는 본선과 다른 교통특성을 가진 연결로교통류의 합류로 차로변경 및 가감속과 같은 차량간의 불규칙한 상호작용이 발생하여 교통류의 난류현상을 야기한다. 따라서, 난류현상은 운행상태를 고려하여 연속된 지점간의 불안정한 교통특성으로 판단하여야 한다. 본 연구에서는 합류영향구간에 차로-지점별 검지기를 설치하여 시공간적으로 연속된 교통자료를 구축하였으며, 지점간에 유의한 속도변화를 판단하는 기준으로 최소유의차(LSD) 통계값을 산정하여 난류현상을 분석하였다. 분석결과, 합류영향구간 난류현상은 운행상태에 따라 발생권역 및 심각도가 변화되는 것으로 나타났다. 이에 따라 난류현상에 의한 최대 합류영향권역은 교통량이 증가하는 혼잡전 운행상태에서 보여지며, 속도변화특성에 따라 상류 100m$\sim$하류 100m의 "감속구간"과 하류 100m$\sim$하류 400m의 "감속속도유지 및 가속구간"으로 구분할 수 있었다.

  • PDF

퍼지로직과 모델추종제어를 이용한 4륜 조향 차량에 관한 연구 (A Study on a 4WS Vehicle Using Fuzzy Logic and Model Following Control)

  • 백승주;오재윤
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.931-942
    • /
    • 1999
  • This paper develops a 3 DOF vehicle model which includes lateral, roll and yaw motion to study a 4WS vehicle. The model is used for the simulation of a 4WS vehicle behavior, and to derive a control algorithm for rear wheel steering. This paper uses a feedforward plus feedback control scheme to compute a rear wheel steering angle. The feedforward control scheme for computing the first rear wheel steering angle uses a gain which is acquired by multiplying a proper value on a gain to maintain a zero sideslip angle. The feedback control scheme for computing the second rear wheel steering angle uses fuzzy logic and model following control scheme. A linear 2 DOF model is used as a reference model for model following control, and is derived from the developed 3 DOF model by neglecting sprung mass roll motion. A reference state variable is yaw rate, and is computed using the linear 2 DOF model. J-turn and lane change maneuver simulation are performed to show the effectiveness of the developed control scheme. The simulation results show that the 4WS vehicle with the developed control scheme has much better performance in yaw rate, lateral acceleration, roll angle, and sideslip angle than the 2WS vehicle. Also, the results show that the performance of the developed control is close to the one of an optimal control which assumes all states are perfect.