• Title/Summary/Keyword: Acceleration feedforward

Search Result 42, Processing Time 0.024 seconds

Base Acceleration Feedforward Control For An Active Magnetic Bearing System Subject To Base Motion (베이스 가진을 받는 전자기 베어링계의 베이스 가속도 피드포워드 제어)

  • Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.399.2-399
    • /
    • 2002
  • This paper concerns on a non-rotating single-DOF beam-active magnetic bearing(AMB) system subject to arbitrary shaped base motion. In such a system, it is desirable to retain the beam within the predetermined air-gap under foundation excitation. Motivated form this, an adaptive acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate the effectiveness of the acceleration feedforward control.

  • PDF

Speed Control of an Induction Motor using Acceleration Feedforward Compensation (가속도 전향보상을 이용한 유도전동기의 속도제어)

  • Kim, Sang-Hoon;Lee, Jae-Wang
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.175-182
    • /
    • 2000
  • In this paper, a novel speed control strategy using an acceleration feedforward compensation by the estimation of the system inertia is proposed. With the proposed method, the enhanced speed control performance can be achieved and the speed response against the disturbance torque can be improved for the vector-controller induction motor drive systems in which the bandwidth of the speed controller cannot be made large enough. The experimental results confirm the validity of the proposed strategy.

  • PDF

Optimal Acceleration Feedforward Control of Active Magnetic Bearing Systems Subject To Base Motion (베이스 운동을 받는 능동자기베어링계의 가속도 최적 앞먹임 제어)

  • 강민식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.84-91
    • /
    • 2003
  • This paper concerns on one-DOF non-rotating active magnetic bearing (AMB) system subject to base motion. In such a system, it is desirable to retain the axis within the predetermined air-gap while the base motion forces the axis to deviate from the desired air-gap. Motivated from this, an optimal acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate that the proposed optimal feedforward control reduces the standard deviation of the air-gap to 29% that by feedback control alone.

Acceleration Feedforward Control in Active Magnetic Bearing System Subject to Base Motion by Filtered-x LMS Algorithm (베이스 가진을 받는 능동자기베어링 시스템에서 Filtered-x LMS 알고리듬을 이용한 가속도 앞먹임 제어)

  • Kang, Min-Sig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1712-1719
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system, it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. An optimal base acceleration feedforward control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate the frequency response function of the feedforward control which cancels base motions. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

Base Acceleration Feedforward Control for an Active Magnetic Bearing System Subject to Base Motion (베이스 가진을 받는 전자기 베어링계의 베이스 가속도 앞먹임 제어)

  • Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1028-1033
    • /
    • 2002
  • This paper concerns on a non-rotating axis-active magnetic bearing (AMB) system subject to base motion. In such a system, it is desirable to retain the axis within the predetermined air-gap. Motivated from this, an optimal acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate that the proposed feedforward control reduces the air-gap deviation to 29% that by feedback control alone.

  • PDF

Improvement of Speed Control Performance using Acceleration Feedforward and Incrtia Identification for the Induction Motor (관성능률 추정과 가속도 전향보상을 이용한 유도전동기의 속도제어 성능향상)

  • 이재옥;김상훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.90-97
    • /
    • 2001
  • In this paper, a novel speed control strategy using an acceleration feedforward compensation by the estimation of the system inertia is proposed. With the proposed method, the enhanced speed control performance can be achieved and the speed response against the disturbance torque can be improved for the vector-controled induction motor drive systems in which the bandwidth of the speed controller cannot be made large enough. The simulation and experimental results for induction motor drive systems confirm the validity of the proposed strategy.

  • PDF

Development of Throttle and Brake Controller for Autonomous Vehicle Simulation Environment (자율주행 시뮬레이션 환경을 위한 차량 구동 및 제동 제어기 개발)

  • Kwak, Jisub;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents a development of throttle and brake controller for autonomous vehicle simulation environment. Most of 3D simulator control autonomous vehicle by throttle and brake command. Therefore additional longitudinal controller is required to calculate pedal input from desired acceleration. The controller consists of two parts, feedback controller and feedforward controller. The feedback controller is designed to compensate error between the actual acceleration and desired acceleration calculated from autonomous driving algorithm. The feedforward controller is designed for fast response and the output is determined by the actual vehicle speed and desired acceleration. To verify the performance of the controller, simulations were conducted for various scenarios, and it was confirmed that the controller can successfully follow the target acceleration.

Disturbance Compensation Control Design far 2-DOF Gun Stabilization System with Gear Stiffness by Using FXLMS Algorithm (기어강성을 갖는 2-자유도 포신 안정화시스템에서 FXLMS 알고리즘을 이용한 외란 보상 제어기 설계)

  • Lim, Jae-Keun;Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.488-493
    • /
    • 2005
  • In gun stabilization systems, the torque comes from the unbalance mass of gun and the base acceleration is an important source of disturbance which degrades stabilization performance. Fatigue of gear train is another important factor affecting structural safety problems. In this paper, a feedback control gain is designed by optimal control weighting to difference between motor and gun velocity, and a feedforward controller using FXLMS algorithm is adopted to investigate those problems. Experimental results show that the feedforward compensator based on FXLMS can reduce the disturbance effects. The directional convergence property according to initial conditions of the FXLMS is also shown through experiments.

  • PDF

Model-Free Longitudinal Acceleration Controller Design and Implementation Quickly and Easily Applicable for Different Control Interfaces of Automated Vehicles Considering Unknown Disturbances (자율 주행 제어 인터페이스에 강건하며 빠르고 쉽게 적용 가능한 모델 독립식 종 방향 가속도 제어기 개발 및 성능 검증)

  • Seo, Dabin;Jo, Ara;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.39-52
    • /
    • 2021
  • This paper presents a longitudinal acceleration controller that can be applied to real vehicles (nonlinear and time-varing systems) with only a simple experiment regardless of the type of vehicle and the control interface structure. The controller consists of a feedforward term for fast response, a zero-throttle acceleration compensation term, and a feedback term (P gain) to compensate for errors in the feedforward term, and another feedback term (I gain) to respond to disturbances such as slope. In order to easily apply it to real vehicles, there are only two tuning parameters, feedforward terms of throttle and brake control. And the remaining parameters can be calculated immediately when the two parameters are decided. The tuning procedure is also unified so that it can be quickly and easily applied to various vehicles. The performance of the controller was evaluated using MATLAB/Simulink and Truksim's European Ben model. In addition, the controller was successfully implemented to 3 medium-sized vehicle (HMC Solati), which is composed of different control interface characteristic. Vehicle driving performance was evaluated on the test track and on the urban roads in Siheung and Seoul.

Simultaneous Positioning and Vibration Control of Chip Mounter with Structural Flexibility (칩마운터 구조물의 유연성을 고려한 위치와 진동 동시 제어)

  • Kang, Min Sig
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Chip mounter which is used to pick chips from the pre-specified position and place them on the target location of PCB is an essential device in semiconductor and LCD industries. Quick and high precision positioning is the key technology needed to increase productivity of chip mounters. As increasing acceleration and deceleration of placing motion, structural vibration induced from inertial reactive force and flexibility of mounter structure becomes a serious problem degrading positioning accuracy. Motivated from these, this paper proposed a new control design algorithm which combines a mounter structure acceleration feedforward compensation and an extended sliding mode control for fine positioning and suppression of structural vibration, simultaneously. The feasibility of the proposed control design was verified along with some simulation results.