• Title/Summary/Keyword: Acceleration comparison

Search Result 441, Processing Time 0.024 seconds

The vertical spanning strip wall as a coupled rocking rigid body assembly

  • Sorrentino, Luigi;Masiani, Renato;Griffith, Michael C.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.433-453
    • /
    • 2008
  • The equation of motion of a one way (vertical) spanning strip wall, as an assembly of two rigid bodies, is presented. Only one degree of freedom is needed to completely describe the wall response as the bodies are assumed to be perfectly rectangular and are allowed to rock but not to slide horizontally. Furthermore, no arching action occurs since vertical motion of the upper body is not restrained. Consequently, the equation of motion is nonlinear, with non constant coefficients and a Coriolis acceleration term. Phenomena associated with overburden to self weight ratio, motion triggering, impulsive energy dissipation, amplitude dependency of damping and period of vibration, and scale effect are discussed, contributing to a more complete understanding of experimental observations and to an estimation of system parameters based on the wall characteristics, such as intermediate hinge height and energy damping, necessary to perform nonlinear time history analyses. A comparison to a simple standing, or parapet, wall is developed in order to better highlight the characteristics of this assembly.

Optimum parameters and performance of tuned mass damper-inerter for base-isolated structures

  • Jangid, Radhey Shyam
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.549-560
    • /
    • 2022
  • The optimum damping and tuning frequency ratio of the tuned mass damper-inerter (TMDI) for the base-isolated structure is obtained using the numerical searching technique under stationary white-noise and filtered white-noise earthquake excitation. The minimization of the isolated structure's mean-square relative displacement and absolute acceleration, as well as the maximization of the energy dissipation index, were chosen as the criteria for optimality. Using a curve-fitting technique, explicit formulae for TMDI damping and tuning frequency for white-noise excitation are then derived. The proposed empirical expressions for TMDI parameters are found to have a negligible error, making them useful for the effective design of base-isolated structures. The effectiveness of TMDI and its optimum parameters are influenced by the soil condition and isolation frequency, according to the comparison made of the optimized parameters and response with different soil profiles. The effectiveness of an optimally designed TMDI in controlling the displacement and acceleration response of the flexible isolated structure under real and pulse-type earthquakes is also observed and found to be increased as the inertance mass ratio increases.

Comparison between Asynchronous and Synchronous Linear Motors as to Thermal Behavior

  • Eun, In-Ung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.61-68
    • /
    • 2001
  • A linear motor has a lot of advantages in comparison with conventional feed mechanisms: high transitional speed, acceleration, high control performance and good positioning at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has along lifetime and is easy to assemble. Recently, the two types of linear motors, asynchronous and synchronous linear motors, are often applied to machine tools as a fast feed mechanism. In this paper, a comparison between the two types of linear motors as to power loss and thermal behavior is made. The heat sources of the linear motor-the electrical power loss in the motor and the frictional heat on the linear guidance-are measured and compared. Also, the temperature on the linear motor and machine structure is measured and presented.

  • PDF

Comparison among Active Roll Controllers for Rollover Prevention and Ride Comfort Enhancement (승차감 향상과 차량 전복 방지를 위한 능동 롤 제어기의 성능 비교)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.828-834
    • /
    • 2014
  • This paper presents a comparison among three types of approaches to an ARC (Active Roll Control) with an AARB(Active Anti-Roll Bar) for a vehicle system. Lateral acceleration and road profile are considered as disturbance. The ARC is designed with an LQ SOF (Linear Quadratic Static Output Feedback) control, $H_{\infty}$ control and SMC (Sliding Mode Control). These approaches are compared in terms of rollover prevention and ride comfort. For comparison, Bode plot analysis based on linear model and frequency response analysis based on CarSim simulation are performed.

A Study for Detecting Fuel-cut Driving of Vehicle Using GPS (GPS를 이용한 차량 연료차단 관성주행의 감지에 관한 연구)

  • Ko, Kwang-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.207-213
    • /
    • 2019
  • The fuel-cut coast-down driving mode is activated when the acceleration pedal is released with transmission gear engaged, and it's a default function for electronic-controlled engine of vehicles. The fuel economy becomes better because fuel injection stops during fuel-cut driving mode. A fuel-cut detection method is suggested in the study and it's based on the speed, acceleration and road gradient data from GPS sensor. It detects fuel-cut driving mode by comparing calculated acceleration and realtime acceleration value. The one is estimated with driving resistance in the condition of fuel-cut driving and the other is from GPS sensor. The detection accuracy is about 80% when the method is verified with road driving data. The result is estimated with 9,600 data set of vehicle speed, acceleration, fuel consumption and road gradient from test driving on the road of 12km during 16 minutes, and the road slope is rather high. It's easy to detect fuel-cut without injector signal obtained by connecting wire. The detection error is from the fact that the variation range of speed, acceleration and road gradient data, used for road resistance force, is larger than the value of fuel consumption data.

Comparative Study on the Quantity Economic Analysis of Apartment Frames Using SDS Result of Dynamic Centrifuge Test at Pile Foundation (말뚝기초의 동적실험결과를 사용한 아파트 골조의 경제성 비교분석)

  • Kim, Sang-Yeon;Park, Jong-Bae;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Site coefficient and amplification factor of current domestic Seismic Design Code based on American Seismic Code, have no consideration for the domestic ground condition in which the base rock is normally placed within 30m form the surface. By previous studies, the measured spectral acceleration of the result of dynamic centrifugal test and analysis was smaller than the design spectral acceleration for the period over 1.5 sec. Accordingly, in this study structural analysis and design using dynamic centrifugal test result for pile foundation were achieved, and the quantity of concrete and reinforcement of wall frame was compared with each other. Comparison results of cost using KBC the design spectral acceleration of SC, SD site and SDS, the quantity of reinforcement using SDS for SD site was 17~23% smaller than using the design code SD site.

Seismic response of non-structural components attached to reinforced concrete structures with different eccentricity ratios

  • Aldeka, Ayad B.;Dirar, Samir;Chan, Andrew H.C.;Martinez-Vazquez, Pedro
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1069-1089
    • /
    • 2015
  • This paper presents average numerical results of 2128 nonlinear dynamic finite element (FE) analyses of lightweight acceleration-sensitive non-structural components (NSCs) attached to the floors of one-bay three-storey reinforced concrete (RC) primary structures (P-structures) with different eccentricity ratios. The investigated parameters include the NSC to P-structure vibration period ratio, peak ground acceleration, P-structure eccentricity ratio, and NSC damping ratio. Appropriate constitutive relationships were used to model the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the vibration periods of the P-structures. Full dynamic interaction was considered between the NSCs and P-structures. A set of seven natural bi-directional ground motions were used to evaluate the seismic response of the NSCs. The numerical results show that the acceleration response of the NSCs depends on the investigated parameters. The accelerations of the NSCs attached to the flexible sides of the P-structures increased with the increase in peak ground acceleration and P-structure eccentricity ratio but decreased with the increase in NSC damping ratio. Comparison between the FE results and Eurocode 8 (EC8) predictions suggests that, under tuned conditions, EC8 provisions underestimate the seismic response of the NSCs mounted on the flexible sides of the plan-irregular RC P-structures.

Earthquake-Induced Wall Pressure Response Analysis of a Square Steel Liquid Storage Tank (지진하중을 받는 정사각형 강재 액체저장탱크의 벽면 압력 응답 해석)

  • Yun, Jang Hyeok;Kang, Tae Won;Yang, Hyunik;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.261-269
    • /
    • 2018
  • This study examines earthquake-induced sloshing effects on liquid storage tanks using computation fluid dynamics. To achieve this goal, this study selects an existing square steel tank tested by Seismic Simulation Test Center at Pusan National University as a case study. The model validation was firstly performed through the comparison of shaking table test data and simulated results for the water tank subjected to a harmonic excitation. For a realistic estimation of the wall pressure response of the water tank, three recorded earthquakes with similar peak ground acceleration are applied:1940 El Centro earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Wall pressures monitored during the dynamic analyses are examined and compared for different earthquake motions and monitoring points, using power spectrum density. Finally, the maximum dynamic pressure for three earthquakes is compared with the design pressure calculated from a seismic design code. Results indicated that the maximum pressure from the El Centro earthquake exceeds the design pressure although its peak ground acceleration is less than 0.4 g, which is the design acceleration. On the other hand, the maximum pressure due to two Korean earthquakes does not reach the design pressure. Thus, engineers should not consider only the peak ground acceleration when determining the design pressure of water tanks.

A Study on Motion Sickness Incidence due to Changes in the Speed of the Training Ship Kaya (실습선 가야호의 선속 변화에 따른 뱃멀미 지수에 관한 연구)

  • Han, Seung-Jae;Ha, Young-Rok;Lee, Seung-Chul;Lee, Chang-Woo;Kim, In-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.228-233
    • /
    • 2014
  • In this paper, the motion performance in waves for the training ship Kaya of Pukyong National University is obtained by using a computer program based on Strip method. To guarantee the pleasant seafaring in ocean, the vertical acceleration of ship motion is calculated according to the location of the ship. The results of calculation by changes of ship speed are compared with the guideline of MSI(Motion Sickness Incidence). The degree of motion sickness is shown and discussed through the comparison between calculated vertical acceleration spectrum and MSI guideline. The computational results of MSI were as follow; when ship speed increased in the order of 5 knots, 10 knots, 12 knots and encounter angle became the bow quartering sea of $120^{\circ}$ compared to $180^{\circ}$ and $150^{\circ}$, the vertical acceleration values grew higher.

Research for Effective Vibrational Rapping Performance of Multiple Electrostatic Precipitators in Series and Parallel Arrangements (전기집진기의 직렬 및 병렬식 배열에 따른 효율적인 진동 탈진에 대한 연구)

  • Choi, Ji-Hyun;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4136-4141
    • /
    • 2013
  • One of the most significant requisite that should be considered for effective rapping of the electrostatic precipitator using electromagnetic vibration exciter is vibration acceleration and resonance frequency of collecting plates. This vibration acceleration shows its peak points when natural frequencies of the system are corresponded with excitation frequency from the power source, and effective rapping performance can be expected. In this research, extend view of single electrostatic precipitator using one electromagnetic vibration exciter, the system was remodeled by arrangement of the exciters in view of multiple modules of the electrostatic precipitator in fields. And vibration acceleration measurement experiment is performed and measured values are compared with these remodeled systems. By this experimental comparison in series and parallel arrangement, effectiveness of arrangement methods for the electromagnetic vibration exciter, expected rapping performance, and power consumption are verified.