• 제목/요약/키워드: Acceleration coefficient

검색결과 296건 처리시간 0.029초

신개념의 레일.차륜간 접촉력 측정에 관한 연구 (A Study on the Measurement of New Concept for the Contact Force between Rail and Wheel)

  • 홍용기;유원희;이희성
    • 한국철도학회논문집
    • /
    • 제10권6호
    • /
    • pp.806-811
    • /
    • 2007
  • 탈선은 차륜 플렌지가 레일에 접촉할 때 발생하는 횡방향의 힘이 커져 차륜이 레일을 이탈하는 현상이다. 탈선 또는 주행안전도를 평가하는 대표적인 기준은 탈선계수이다. 차륜에 스트레인게이지를 부착하여 탈선계수를 측정하는 기존방법은 대단히 복잡하고 측정의 실패확률도 높으며, 고도의 측정기술과 고가의 비용이 요구되고 있다. 따라서 안전성확인이 필요한 그 시점에 즉시 확인하지 못하고 있어 안전확보에 어려움을 겪고 있다. 본 논문에서는 차륜과 레일간의 접촉력인 윤중과 횡압을 쉽게 측정할 수 있는 방안을 집중적으로 연구하였으며, 가속도과 변위의 거동만으로 탈선 가능성을 예측할 수 있는 새로운 탈선계수 측정방법을 제시하였다.

선반용 보링바의 동적응답특성 변동에 관한 연구 (A Study on the Dynamic Response Characteristics of Lathe Boring Bar)

  • 천세호;고태조
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.62-69
    • /
    • 2010
  • Internal lathe machining with a boring bar is weak with respect to vibration because the bar is long and slender. Therefore, it is important to study the dynamic characteristics of a boring bar. The purpose of this study was to identify the effects of overhang and cutting conditions on the dynamic response characteristics of a boring bar. For an efficient experiment, an $L_g(3^3)$ orthogonal array was applied and the results were quantitatively analyzed by ANOVA. Overhang, feed per revolution, and depth of cut were selected as independent variables. Meanwhile, dynamic stiffness, damping ratio, damping coefficient, and acceleration were chosen as dependent variables. The vibration signal was obtained from an accelerometer attached to the boring bar, followed by visualization by a signal analyzer. The effect of overhang was found to have a significant effect on the dynamic stiffness, damping ratio, and damping coefficient, but the other variables did not. As the length of the overhang increased, the dynamic stiffness decreased and the damping ratio increased. In addition, the damping coefficient increased until the length of the overhang was 4D (where D is the shank diameter), after which it remained constant. The acceleration decreased until the overhang length was 4D, and then increased sharply when the overhang was increased further. From these results, the behavioral trend of the damping characteristics changed when its overhang length was 4D. Consequently, there is a critical point that the dynamic characteristics of boring bar change.

Thrust Characteristics of a Laser-Assisted Pulsed Plasma Thruster

  • Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.294-299
    • /
    • 2004
  • An assessment of a novel laser-electric hybrid propulsion system was conducted, in which a laser-induced plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. A fundamental study of newly developed rectangular laser-assisted pulsed-plasma thruster (PPT) was conducted. On discharge characteristics and thrust performances with increased peak current compared to our previous study to increase effects of electromagnetic forces on plasma acceleration. Maximum peak current increased for our early study by increasing electromagnetic effects in a laser assisted PPT. At 8.65 J discharge energy, the maximum current reached about 8000 A. Plasma behaviors emitted from a thruster in various cases were observed with an ICCD camera. It was shown that the plasma behaviors were almost identical between low and high voltage cases in initial several hundred nanoseconds, however, plasma emission with longer duration was observed in higher voltage cases. Canted current sheet structures were also observed in the higher voltage cases using a larger capacitor. With a newly developed torsion-balance type thrust stand, thrust performances of laser assisted PPT could be estimated. The impulse bit and specific impulse linearly increased. On the other hand, coupling coefficient and the thrust efficiency did not increase linearly. The coupling coefficient decreased with energy showing maximum value (20.8 ?Nsec/J) at 0 J, or in a pure laser ablation cases. Thrust efficiency first decreased with energy from 0 to 1.4 J and then increased linearly with energy from 1.4 J to 8.6 J. At 8.65 J operation, impulse bit of 38.1 ?Nsec, specific impulse of 3791 sec, thrust efficiency of 8 %, and coupling coefficient of 4.3 ?Nsec/J were obtained.

  • PDF

Extraction of Motion Parameters using Acceleration Sensors

  • Lee, Yong-Hee;Lee, Kang-Woo
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권10호
    • /
    • pp.33-39
    • /
    • 2019
  • 본 논문에서는 인체의 활동량을 측정하기 위해 가속도 센서로 부터 얻은 운동신호를 파라미터로 모델링 하는 방법을 제안한다. 상체와 하체의 움직임이 동시에 일어나지 않는 경우, 현재의 단체널 방식의 운동량 분석방법은 많은 오차를 수반하게 된다. 본 연구에서는 3축 가속도 센서를 팔과 다리에 부착하고 인체의 활동을 측정한 후, 각 채널 별로 팔과 다리의 운동량을 계산하고, 채널별로 선형예측계수를 얻는다. 또한, 상체와 하체운동간의 교차상관도를 측정함으로써 상체와 하체의 주기성을 판단하게 된다. 선형예측계수와 주기 값은 운동의 종류와 이에 따른 운동량을 측정하는 자료로 이용하게 된다. 결과에서 제안한 방법의 유효성을 확인하기 위해 계단내려가기, 계단오르기, 언덕오르기, 언덕내려가기 등의 4가지 운동을 측정하여, 제시한 파라미터 모델의 유용성을 확인한다.

파랑관통형 고속 활주선 실선 성능 분석에 관한 연구 (Study on Sea Trial Analysis of Wave Piercing High Speed Planing Boat)

  • 정우철;이창우;한상천
    • 한국해양공학회지
    • /
    • 제31권5호
    • /
    • pp.335-339
    • /
    • 2017
  • This study investigated the sea trial performance of a wave piercing high speed planing hull (WPH). The bow shape of the boat is sharp, and it has no chine or spray strip like a normal planing boat. The skeg is attached to the bottom of the boat in the longitudinal direction from the bow to the stern. The speed performance was analyzed as the speed dropped in a wave, and the seakeeping performance was compared with that of a planing boat with a similar velocity coefficient by measuring the vertical acceleration of the bow in the wave. The turning circle was compared with Lewandowski's estimation for a planing boat. As a result of this study, it was confirmed that the velocity drop of the developed WPH was not large in a wave, and the vertical acceleration was greatly reduced compared with that of a normal planing boat. The turning circle was somewhat larger than the estimated results for a planing boat, but the overall tendency was the same.

사축식 유압 피스톤 펌프의 밸브 플레이트 형상과 하우징 진동간 상관관계에 대한 해석 (Analysis on the Relationships Between the Valve Plate Geometry and the Housing Vibration of a Bent-Axis Type Hydraulic Piston Pump)

  • 김성훈;홍예선
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.52-59
    • /
    • 2006
  • The vibration of hydraulic piston pumps is induced by the periodically changing cylinder chamber pressure whose waveform is significantly influenced by valve plate geometry. In this study, the force input to the housing of a bent-axis type hydraulic piston pump was computed by deriving the dynamic equations of its piston and cylinder barrel. The vibration intensity of the pump was represented by the acceleration amplitude of its housing. In order to comparatively evaluate the influence of valve plate geometry on the vibration of pump housing, two different types of valve plate were tested. The computed results showed good agreement with the experimental data, indicating that the vibration acceleration of pump housing is rather dependent on the variation amplitude of balance coefficient than the changing slope or overshoot of cylinder chamber pressure. It was also confirmed that the design effect of valve plates could be directly examined out by monitoring the vibration acceleration of pump housing.

3축 가속도 센서를 이용한 자세 교정 유도 시스템 (Correct Posture Guidance System using 3-axis Acceleration Sensor for Scoliosis Patient)

  • 안양수;김거식;서정환;송철규
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.220-224
    • /
    • 2010
  • In this study, we designed a device for consecutively observing position, utilizing 3-axises acceleration sensor. This method offer to check his or her wrong position and developed could to help derived a position appliance. And, we developed a Cobb's angle value in three dimensional using 3-axises acceleration sensor. A proposed device with integrated accelerometers, which can detect postural changes in terms of curvature variation of the spine in the sagittal and coronal planes, has been developed with intention to facilitate posture training. The proposed device was evaluated with 3 normal subjects daily activities. We evaluated the performance of our designed device as calculating the correlation coefficients and mean errors between the angle measured by an electro-goniometer and that estimated by a gravity accelerometer and verified the accuracy and sensitivity. The results showed that the angle obtained from the proposed device revealed a linear characteristic at the range of $\pm60^{\circ}$(correlation coefficient 0.99, error range $\pm2^{\circ}$). We demonstrated that our device could detect the changes of the motion in upper trunk accurately. Also, our device showed good potential for treatment of the patients with scoliosis and prevention of the unbalance position during a daily life.

Piezoelectric friction dampers for earthquake mitigation of buildings: design, fabrication, and characterization

  • Chen, Genda;Garrett, Gabriel T.;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.539-556
    • /
    • 2004
  • In this paper, the design, fabrication and characterization of a piezoelectric friction damper are presented. It was sized with the proposed practical procedure to minimize the story drift and floor acceleration of an existing 1/4-scale, three-story frame structure under both near-fault and far-field earthquakes. The design operation friction force in kip was numerically determined to range from 2.2 to 3.3 times the value of the peak ground acceleration in g (gravitational acceleration). Experimental results indicated that the load-displacement loop of the damper is nearly rectangular in shape and independent of the excitation frequency. The coefficient of friction of the damper is approximately 0.85 when the clamping force on the damper is above 400 lbs. It was found that the friction force variation of the damper generated by piezoelectric actuators with 1000 Volts is approximately 90% of the expected value. The properties of the damper are insensitive to its ambient temperature and remain almost the same after being tested for more than 12,000 cycles.

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan;Li, Chunxiang;Chen, Xu
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.49-61
    • /
    • 2020
  • This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.