• Title/Summary/Keyword: Acceleration Pattern

Search Result 230, Processing Time 0.024 seconds

Nonlinear harmonic resonances of spinning graphene platelets reinforced metal foams cylindrical shell with initial geometric imperfections in thermal environment

  • Yi-Wen Zhang;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.405-417
    • /
    • 2023
  • This paper reveals theoretical research to the nonlinear dynamic response and initial geometric imperfections sensitivity of the spinning graphene platelets reinforced metal foams (GPLRMF) cylindrical shell under different boundary conditions in thermal environment. For the theoretical research, with the framework of von-Karman geometric nonlinearity, the GPLRMF cylindrical shell model which involves Coriolis acceleration and centrifugal acceleration caused by spinning motion is assumed to undergo large deformations. The coupled governing equations of motion are deduced using Euler-Lagrange principle and then solved by a combination of Galerkin's technique and modified Lindstedt Poincare (MLP) model. Furthermore, the impacts of a set of parameters including spinning velocity, initial geometric imperfections, temperature variation, weight fraction of GPLs, GPLs distribution pattern, porosity distribution pattern, porosity coefficient and external excitation amplitude on the nonlinear harmonic resonances of the spinning GPLRMF cylindrical shells are presented.

Impact Shock Components and Attenuation in Flat Foot Running (편평족 달리기 시 충격 쇼크의 성분과 흡수)

  • Ryu, Ji-Seon;Lim, Ga-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.283-291
    • /
    • 2015
  • Objective : The purpose of this study was to determine the differences in the head and tibial acceleration signal magnitudes, and their powers and shock attenuations between flat-footed and normal-footed running. Methods : Ten flat-footed and ten normal-footed subjects ran barefoot on a treadmill with a force plate at 3.22m/s averaged from their preferred running speed using heel-toe running pattern while the head and tibial acceleration in the vertical axis data was collected. The accelerometers were sampled at 2000 Hz and voltage was set at 100 mv, respectively. The peak magnitudes of the head and tibial acceleration signals in time domain were calculated. The power spectral density(PSD) of each signal in the frequency domain was also calculated. In addition to that, shock attenuation was calculated by a transfer function of the head PSD relative to the tibia PSD. A one-way analysis of variance was used to determine the difference in time and frequency domain acceleration variables between the flat-footed and normal-footed groups running. Results : Peaks of the head and tibial acceleration signals were significantly greater during flat-footed group running than normal-footed group running(p<.05). PSDs of the tibial acceleration signal in the lower and higher frequency range were significantly greater during flat-footed running(p<.05), but PSDs of the head acceleration signal were not statistically different between the two groups. Flat-footed group running resulted in significantly greater shock attenuation for the higher frequency ranges compared with normal-footed group running(p<.05). Conclusion : The difference in impact shock magnitude and frequency content between flat-footed and normal-footed group during running suggested that the body had different ability to control impact shock from acceleration. It might be conjectured that flat-footed running was more vulnerable to potential injury than normal-footed running from an impact shock point of view.

Balance Recovery Mechanisms Against Anterior Perturbation during Standing (직립자세에서의 전방향 동요 시 균형회복 기전)

  • 태기식;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.435-442
    • /
    • 2003
  • In this paper, biomechanical aspects of dynamic대학교postural responses against forward perturbations were experimentally determined simultaneous measurements of joint angles, accelerations. EMG activations, center of pressure(CoP) movements and ground reaction forces(GRF), Thirteen young healthy volunteers, stood on a flat platform, were translated into the forward direction by an AC servo-motor at two separate velocities(0.1m and 0.2m/s). In order to recover postural balance against the forward perturbation, joint motions were observed in the sequence of the ankle dorsiflexion, the knee flexion and then the hip flexion during the later acceleration phase. Both acceleration patterns at the heel and the sacrum were shown the forward acceleration pattern during the later acceleration phase and early of constant velocity phase as increasing platform velocity, respectively. Tibialis anterior(TA) for the ankle dorsiflexion and biceps femoris(BF) for the knee flexion. the primary muscle to recover the forward perturbation, was activated during the half of acceleration phase. Ankle strategy was used for slow-velocity perturbation, but mixed strategy of both ankle and hip used for the fast-velocity perturbation. In addition, parameters of perturbation such as timing and magnitude influenced the postural response against the perturbation.

Characteristics of Smoke Emissions from Light Duty Diesel Vehicles Using Light Extinction Smoke Measurement Method under free Acceleration Test Mode (광투과식 매연 측정법을 이용한 소형 디젤 차량의 무부하 급가속 조건에서의 매연 배출 특성)

  • Kang, Il-Ho;Lee, Choong-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • Characteristics of smoke emission in light duty diesel vehicles was investigated according to the year of production, engine displacement volume, and mileage. The smoke emission was measured using light extinction smoke measurement method under free acceleration test mode. Total number of the tested vehicles was 180. The year of production of the tested vehicles distributed from 2002 to 2007. The displacement volumes of the tested vehicles were categorized as 2-liter, 2.5-liter, 2.7-liter, and 3-liter. The mileage of the tested vehicles distributed from 20,000 km to 400,000 km. The more recent in the year of production of the tested vehicles did not show clearly lower in smoke emissions. Smoke emission showed different values according to driver's pedal pushing pattern. Also, smoke emission peak for each free acceleration test initially increased and reach a maximum of the peak values. Afterwards, the smoke peak gradually decreased as number of test increased. A new guide line was proposed to determine the smoke value from the light duty diesel vehicles based on smoke emission peak patterns which were obtained with several repeated free acceleration tests.

A Study on the Selection of Train Operation Mode Minimizing the Running Energy Consumption (전동열차 운행에너지를 최소화 하는 운전모드 결정)

  • Kim, Yong-Hyun;Kim, Dong-Hwan;Kim, Chi-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.38-48
    • /
    • 2007
  • this paper analyses how much acceleration and deceleration of urban rail vehicle should be applied and how to choose an operation mode to minimize energy consumption when train runs between stations within the fixed operation time. The decided operation pattern satisfying the minimum energy consumption becomes a target trajectory and a basis for the controller design criteria. To make this goal it grasps the characteristics of urban rail vehicle, realize operation energy model of urban rail vehicle and verity the accuracy of embodied model the Matlab simulation with the same operation result of real route. It searches for operation pattern to minimize operation energy by changing the acceleration and deceleration on the imaginative route and proposes operation pattern minimizing energy consumption by applying real operation data between stations of Seoul Metropolitan Subway Line 6.

Vibration characteristics of endodontic motors with different motion: reciprocation and conventional rotation (왕복운동 및 회전운동 근관성형용 전동모터 간의 진동 양상 비교)

  • Jeon, Yeong-Ju;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee;Chang, Hoon-Sang
    • The Journal of the Korean dental association
    • /
    • v.52 no.12
    • /
    • pp.734-743
    • /
    • 2014
  • Objectives: By introduced reciprocation motion file in dentistry, dentists benefit simple canal shaping procedure and time-saving. But, reciprocation motion generates uncomfortable vibration to doctors and patients. Because there was no study about this consideration, this study compared vibration pattern and power generated from reciprocation motion motor and conventional rotary motor. Materials & Methods: One conventional rotary motor; X-Smart (Dentsply Maillefer, Ballaigues, Switzerland); and two reciprocating motors; WaveOne Motor (Dentsply Maillefer, Ballaigues, Switzerland) and X-SMART PLUS (Dentsply Maillefer, Ballaigues, Switzerland); were used in this study. Triaxial $ICP^{(R)}$ Accelerometer (Model 356A12, PCB piezotronics, New York, USA) was attached on motor's handpiece head, and was measured tri-axial vibratory acceleration with NI Sound and Vibration Assistant 2009 software (National Instruments, Texas, USA). Mean vibratory acceleration and maximum vibratory acceleration was measured on fixed position and handed position. The results of vibratory acceleration were statistically analyzed using ANOVA and multiple comparisons are made using Turkey's test at p<0.05 level. Results: Reciprocating motors showed higher mean vibratory acceleration and maximum vibratory acceleration than conventional rotary motor (p<0.05). Between reciprocating motors, X-SMART PLUS had lower mean vibratory acceleration and maximum vibratory acceleration than WaveOne Motor (p<0.05). Conclusion: Reciprocating motors generate more vibration than conventional rotary motor. Further study about effect of vibration to dentist and patient is needed. And it seems to be necessary to make a standard about vibration level in endodontic motors.

Study on flexure angle measurement of ring laser gryo and the improvement of flexure error (링레이저 자이로의 플렉셔 각도측정과 플렉셔 오차개선 연구)

  • 조민식;김광진;김정주
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.68-73
    • /
    • 2004
  • Flexure measurement of ring laser gyro was investigated by using an interferometer. A two-beam interferometer of Fiezo-fringe pattern obtained the flexure angle in 1-gravity acceleration and the higher acceleration environments. These environments were made with the addition of dummy mass to the ring laser gyro axis. The flexure angle change for 1-gravity acceleration change was measured as 2.37 arcsec/g with low repeatability error of 0.01 arcsec/g. The laser navigation system consisting of 3 flexure-reduced ring laser gyros showed the improvement of flexure error.

A Study on Improvement of Aiming Ability using Disturbance Measurement in the Ground Military Vehicle (지상무기체계에서의 외란측정을 이용한 정밀 지향성 향상 연구)

  • Yoo, Jin-Ho;Park, Byung-Hun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.12-20
    • /
    • 2007
  • The aiming ability is a key to improve the accuracy performance of the gun pointing system in the ground military vehicle. This paper describes the new detection method of chatter vibration using disturbance acceleration in the pointing structure. In order to analysis the vibration trends of the pointing system occurred while the vehicle driving, acceleration data obtained from vehicle was processed by using data processing algorithm with moving average and Hilbert transform. The specific mode constants of acceleration were obtained from various disturbances. Vehicle velocity, road condition and property of pointing structure were considered as factors which make the change of vibration trend in vehicle dynamics. Finally, back propagation neural networks have been applied to the pattern recognition of the classification of vibration signal in various driving conditions. Results of signal processing were compared with other condition result and analysed.

A study on Improvement for distorted images of the Digital X-ray Scanner System based on Fuzzy Correction Algorithm

  • Baek, Jae-Ho;Kim, Kyung-Jung;Park, Mi-Gnon
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.173-176
    • /
    • 2005
  • This paper proposes a fuzzy correction algorithm that can correct the distorted medical image caused by the scanning nonlinear velocity of the Digital X-ray Scanner System (DX-Scanner) using the Multichannel Ionization Chamber (MIC). In the DX-Scanner, the scanned medical image is distorted for reasons of unsuitable integration time at the nonlinear acceleration period of the AC servo motor during the inspection of patients. The proposed algorithm finds the nonlinear motor velocity modeling through fuzzy system by clustering and reconstructs the normal medical image lines by calculating the suitable moving distance with the velocity of the motor using the modeling, acceleration time and integration time. In addition, several image processing is included in the algorithm. This algorithm analyzes exact pixel lines by comparing the distance of the acceleration period with the distance of the uniform velocity period in every integration time and is able to compensate for the velocity of the acceleration period. By applying the proposed algorithm to the test pattern for checking the image resolution, the effectiveness of this algorithm is verified. The corrected image obtained from distorted image is similar to the normal and better image for a doctor's diagnosis.

  • PDF

Efficient Mode Superposition Method for Non-Classically Damped Systems (비비례 감쇠시스템의 해석을 위한 효율적인 모드 중첩법)

  • Cho, Sang-Won;Cho, Ji-Seong;Park, Sun-Kyu;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.549-555
    • /
    • 2000
  • The improved mode superposition methods for non-classically damped systems are presented in this paper. Generally, the mode superposition method uses a relatively small subset of the normal modes of structures. The mode acceleration method and the modal truncation augmentation method improve the results of the mode superposition method by considering effects of truncated high modes. For using these methods to analyze non-classically damped systems, the systems are approximated to the classically damped systems and thereby the errors are induced. In this paper, the mode acceleration method and the modal truncation augmentation method are expanded to analyze the non-classically damped systems. The applicability of the expanded methods is verified by closed form solutions and numerical examples. The expanded modal truncation augmentation method is conditionally stable depending on the pattern of the external loading in the non-classically damped systems whereas the expanded mode acceleration method is stable for the all cases of loading. In the stable case, the results are the same with those of the expanded mode acceleration method.

  • PDF