• Title/Summary/Keyword: Accelerated Degradation Testing

Search Result 58, Processing Time 0.028 seconds

Analysis of Luminance Degradation characteristics of OLED using the Hotplate (핫플레이트를 이용한 OLED의 휘도열화특성 분석)

  • Kim, Yun-Cheol;Lee, Duek-Jung;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.356-363
    • /
    • 2016
  • Purpose: The purpose of this study is to propose efficiency of equipment testing the luminance degradation of OLED. Methods: The degradation model of Exponential model and Stretched exponential model is analyzed by goodness of fit test using calculated R-square. The degradation model having the higher R-square is finally selected. Scale parameter and Shape parameter using the selected degradation model is estimated. The activation energy and current density n using peck model among the accelerated model is estimated. the estimated parameters are analyzed by t-test. Results: The results of t-test show that the estimated parameters on chamber and hotplate are equal statistically. we can know the similarity of the luminance degradation rate and degradation pattern on chamber and hotplate. Conclusion: The result of the degradation test on chamber and hotplate is similar. when the accelerated degradation test on the panel of the OLED TV is performed, hotplate is requiring less samples, time and cost than chamber. so the accelerated degradation test on the panel of the OLED TV using the hoplate is efficient of time and cost.

Lifetime Prediction of Automotive Airbag Fabrics (자동차 에어백용 원단의 수명예측)

  • Koo, Hyun-Jin;Cho, Hang-Won;Chang, Gap-Shik
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • The airbag module is an inflatable restraint system that inflates within 0.05 seconds automatically in a collision to protect the occupants. The airbag fabrics used in the module are required to have the good resilience and strength and also to have retained at least 80% of mechanical properties after using longer than 10 years. In this study, we develop an accelerated test method in order to predict the lifetimes of airbag. In this test, we select temperature and humidity as environmental stresses by analyzing the failure mechanisms of coated and uncoated nylon 66 fabrics. It is found that the degradation of airbag fabrics is effectively accelerated under the combined conditions of high temperature and humidity. Analyzing the results of the accelerated test, the lifetimes of airbag fabrics are predicted to be longer than 10 years.

  • PDF

Research Results and Trends Analysis on Accelerated Testing for Ensuring High Reliability (고 신뢰성 확보를 위한 가속시험의 연구동향 분석)

  • Kim, Jong-Gurl;Song, Jung-Moo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.419-432
    • /
    • 2011
  • 제품의 신뢰성에 대한 소비자의 인식이 높아짐에 따라 기업에서는 높은 품질과 신뢰성 있는 제품을 만들기 위해 많은 노력을 하고 있다. 신뢰성은 기기, 부품, 재료 등 시스템이 규정된 조건하에서, 의도하는 기간 동안 규정된 기능을 고장 없이 수행할 수 있는 성질로 규정된다. 높은 신뢰성의 확보를 위한 제품의 신뢰성 시험은 많은 시간과 비용이 소모되기 때문에 현대의 빠른 시장 흐름에 따라가지 못한다. 특히, 최근 기술발전 속도가 빨라지고 제품 수명주기(Life Cycle)와 개발 기간이 짧아지고 있는 추세에 있으므로 이에 대응할 수 있는 신속한 시험방법의 실시가 반드시 필요한 시점이다. 위와 같은 신뢰성을 갖는 제품의 시험의 한계를 극복하고 시험시간을 단축하기 위한 여러 가지 방법이 연구되어 왔고, 그 중 가속 시험(Accelerated Test)에 대한 필요성과 요구가 계속 증가하고 있는 추세다. 본 연구에서는 단순부품과 재료의 신뢰도 정보를 신속하게 얻는데 매우 유용한 신뢰성 시험방법 중에 하나인 가속시험의 연구동향과 적용 현황을 분석하고 이의 효과적인 적용과 활용방안을 모색 하고자 한다.

  • PDF

Proposal of Accelerated Life Test Method of Inverter for General and Military Vehicles (일반 및 군용 차량용 인버터 가속수명시험법 제안)

  • Jang, In-Hyeok;Kim, Jeong-Ho;Hyung, Jae-Pil;Lim, Hong-Woo;Choi, Youn-Ok
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.136-142
    • /
    • 2017
  • Purpose: In this paper, we propose a test method for evaluating the life time of the inverter which is one of the main internal configuration systems in order to evaluate the life time of the power supply for the vehicle. Methods: The performance and failure criteria required for the development of the accelerated life test method were established and the Taguchi method was used to derive the stress factors affecting performance and reliability. Results: The major stress of the product degradation were considered to be high temperature. Conclusion: The acceleration factor was estimated through a two-level high temperature test and a test methods was designed to guarantee the accelerated life time of the inverter.

Investigation of EVA Accelerated Degradation Test for Silicon Photovoltaic Modules

  • Kim, Jaeun;Rabelo, Matheus;Holz, Markus;Cho, Eun-Chel;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.17 no.2
    • /
    • pp.24-31
    • /
    • 2021
  • Renewable energy has become more popular with the increase in the use of solar power. Consequently, the disposal of defective and old solar panels is gradually increasing giving rise to a new problem. Furthermore, the efficiency and power output decreases with aging. Researchers worldwide are engaged in solving this problem by developing eco-module technologies that restore and reuse the solar panels according to the defect types rather than simple disposal. The eco-module technology not only solves the environmental problem, but also has economic advantages, such as extending the module life. Replacement of encapsulants contributes to a major portion of the module maintenance plan, as the degradation of encapsulants accounts for 60% of the problems found in modules over the past years. However, the current International Electrotechnical Commission (IEC) standard testing was designed for the commercialization of solar modules. As the problem caused by long-term use is not considered, this method is not suitable for the quality assurance evaluation of the eco-module. Therefore, to design a new accelerated test, this paper provides an overview of EVA degradation and comparison with the IEC and accelerated tests.

A Study on the Accelerated Life Test for Evaluating the Reliability of Nickel-Cadmium Batteries

  • Kwon, Soo-Ho;Huh, Yang-Hyun;Lim, Tae-Jin
    • International Journal of Reliability and Applications
    • /
    • v.1 no.1
    • /
    • pp.89-104
    • /
    • 2000
  • Accelerated testing consists of a variety of test methods for shortening the life of products or hastening the degradation of their performance. This paper presents practical, modern statistical methods for evaluating the reliability of Nickel-Cadmium batteries at their design temperature of 2$0^{\circ}C$ by accelerated life test. Batteries have been life tested at three high temperature conditions, 50, 60, 7$0^{\circ}C$, respectively to yield failures quickly. The failures have been observed and judged by means of charge and discharge current integration. Analyses of life data from those conditions resulted in the Weibull distribution, which has been verified on the ground of the Kolmogorov-smirnov test and the pairwise t-test. Life data are modeled according to the Arrhenius life-temperature relationship. The mean life of tested batteries is assessed at about 590 cycles, and the activation energy of this chemical reaction is concluded to be 0.39eV as results. This study provides procedures for estimating the reliability of batteries in a short period, which has little been possible in domestic industries. The results can be applied in many fields such as proof testing, acceptance testing, and estimating assurance periods.

  • PDF

An Accelerated Life Test of LED Lights for Aviation Taxiway (항공유도로등화용 LED 광원의 가속수명시험)

  • Min, Kyong-Chan;Yun, Yang-Gi;Kim, Myung-Soo
    • Journal of Applied Reliability
    • /
    • v.11 no.2
    • /
    • pp.127-140
    • /
    • 2011
  • This paper presents an accelerated life test of aviation taxiway lights installed in the airport to help safe navigation of airplanes at night or in bad weather. Recently halogen lamps of taxiway lights are replaced by LED ones and their reliability needs yet to be verified. Thus, effective test conditions are designed reflecting the failure modes and mechanisms from the previous studies on LED, which include the accelerated degradation process. The test is performed under the temperature $70^{\circ}C$ and $90^{\circ}C$ for two types of LED lights, taxiway center line lights(TCLL) and taxiway edge lights (TEDL). The failure time data were analyzed using lognormal distribution and Arrhenius model to find the life-stress relationship, acceleration factor and life characteristics under the normal condition temperature $30^{\circ}C$.

Storage Life Evaluation of a Violet Smoke Hand Grenade(KM18) using Degradation Data (열화데이터를 이용한 자색 연막수류탄(KM18)의 저장수명 평가)

  • Chang, Il-Ho;Hong, Suk-Hwan;Jang, Hyun-Jeung;Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.215-223
    • /
    • 2012
  • A violet smoke hand grenade(KM18) is used to generate signals. The grenade is considered to fail when its smoke emission time is longer than the specified one so that its smoke concentration becomes lighter. Accelerated degradation test for the grenade was performed, and then failure in smoke emission time was reproduced from the test. Stress for the degradation test was selected as temperature/humidity from the pre-test results. Degraded data of emission time from the accelerated test were analyzed through applying a distibution-based degradation model. Then, Peck Model was applied to predict the storage life under field conditions. In addition, the predicted storage life was compared with that of ASRP(Ammunition Stockpile Reliability Program).

Evaluation of the Degradation Trend of the Polyurethane Resilient Pad in the Rail Fastening System by Multi-stress Accelerated Degradation Test (복합가속열화시험을 통한 레일체결장치 폴리우레탄 탄성패드의 열화 경향 분석)

  • Sung, Deok-Yong;Park, Kwang-Hwa
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.466-472
    • /
    • 2013
  • The use of a concrete track is gradually growing in urban and high-speed railways in many part of the world. The resilient pad, which is essentially when concrete tracks are used, plays the important role of relieving the impact caused by train loads. The simple fatigue test[1] to estimate the variable stiffness of resilient pads is usually performed, but it differs depending on the practical conditions of different railways. In this study, the static stiffness levels of used resilient pads according to passing tonnages levels were measured in laboratory tests. Also, the simple fatigue test and the multi-stress accelerated degradation test for new resilient pads were performed in a laboratory. The static stiffness of the used pad was compared with the results of tests of usage times and cycles. The results of the comparison showed that the variable static stiffness levels of the used pad were similar to results of the multi-stress accelerated degradation test considering the fatigue and heat load. With a T-NT equation related to the degree of the multi-stress accelerated degradation, a model of multi-stress accelerated degradation for a resilient pad was devised. It was found through this effort that the total acceleration factor was approximately 2.62. Finally, this study proposes an equation for a multi-stress accelerated degradation model for polyurethane resilient pads.

Component and Bench Tests of Polyurethane Hydraulic Reciprocating Seal for Accelerated Life Testing (부품 및 벤치 실험을 통한 폴리우레탄 유압 왕복 실의 가속 실험)

  • Je, Youngwan;Kim, Hansol;Kim, Lyu-Woon;Chung, Koo-Hyun;An, Joong-Hyok;Jeon, Hong-Gyu
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.271-277
    • /
    • 2014
  • Hydraulic reciprocating seals have been widely used to prevent fluid leakage and to provide lubricant film on counter surface in various hydraulic system. The degradation of the seal may cause the catastrophic failure of the hydraulic system. To assess the durability of the seals and the compatibility with counter surface, accelerated life testing (ALT) has been typically employed from industry. However, ALT often takes up to a few months to cause a failure of the seals, and therefore, there is a need to develop more efficient ALT methods. In this work, the degradation characteristics of polyurethane (PU) seals from field test are investigated and they are compared to those from the component and bench tests, with an aim to contribute to the development of ALT method. From the comparison of the cross-sectional profiles of the sealing surface of the PU specimens before and after the tests, both wear and compression set are found to be responsible for degradation of the PU seals. It is also shown that the major wear mechanisms of the PU seals from the field is abrasive wear and formation of pits. The component and bench tests performed in this work are shown to reproduce such wear mechanisms, and therefore, those test methods can be used as an ALT method for PU seals. In particular, the bench test proposed in this work may be effectively utilized to assess the durability and the compatibility of the seals with the counter surface. The results of this work are expected to aid in the design of ALT for PU seal.