• Title/Summary/Keyword: Accelerated Aging Environmental Test

Search Result 32, Processing Time 0.031 seconds

Aging Characteristics of Polymer Lighting Arrester by Multi-Stress Accelerated Aging Test (복합가속열화시험에 의한 폴리머 피뢰기의 경년특성)

  • Song, Hyun-Seok;Lee, Jae-Bong;Jang, Sang-Ok;Han, Yong-Huei;Oh, Jae-Hyoung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.86-89
    • /
    • 2004
  • Recently polymer arresters are being used widely but we don't have appropriate long term characteristics test methods. Therefore we need to develop special test facility to evaluate long term reliability of polymer arresters. It's polymeric housing can be degraded by environmental stress and the interface between housing and inner module can be affected by moisture absorption. This moisture absorption can cause leakage current and tracking in the interface. We developed multi stress accelerated ageing test facility to simulate field conditions including UV, temperature, humidity, voltage, salt fog and rain. In addition, we carried out field exposure test at the outdoor test yard and characteristics analysis of field operated specimens to evaluate accelerating factor of this accelerated aging test.

  • PDF

Evaluation Technology of Electrical and reliableility Characteristics for Outdoor Polymer Insulator Materials (폴리머 절연물 소재의 전기적 밀 복합열화 특성평가 기술)

  • Ahn, Myeong-Sang;Park, Hoy-Yul;Na, Moon-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1343-1344
    • /
    • 2006
  • There have been numerous accelerated aging laboratory tests for evaluating suitability of polymeric materials and devices. Aging test for materials and its full scale device has been conducted. Service experience plays a key role in the utility section of composite insulators. A meaningful and reliable accelerated aging test is needed for evaluating composite insulator. During the service these insulators are subjected to aging stress such as humidity, pollution, and electrical field, and erosion and tracking of the weathershed occurs. This paper presents the criteria of reliability evaluation and evaluation facilities for 22.9 kV suspension composite insulator. We adopt the criteria of reliability evaluation consist of two test methods. One is CEA tracking wheel test for examining the tracking and erosion performance of composite insulator. The other is multi-stress aging test for examining effects of environmental factors such as UV, temperature, humidity, etc on composite insulator.

  • PDF

Reliability Evaluation Criteria and Multi-Stress Aging Test for Polymer Insulator (폴리머 현수애자의 신뢰성 평가 및 복합가속열화 방법)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.469-472
    • /
    • 2004
  • There have been numerous accelerated aging laboratory tests for evaluating suitability of polymeric materials and devices. Aging test for materials and its full scale device has been conducted, but poor correlation of aging test such as service experience were observed. Service experience plays a key role in the utility section of composite insulators. A meaningful and reliable accelerated aging test is needed for evaluating composite insulator. During the service these insulators are subjected to aging stress such as humidity, pollution, and electrical field, and erosion and tracking of the weathershed occurs. This paper presents the criteria of reliability evaluation and evaluation facilities for 22.9 kV suspension composite insulator. We adopt the criteria of reliability evaluation consist of two test methods. One is CEA tracking wheel test for examining the tracking and erosion performance of composite insulator. The other is multi-stress aging test for examining effects of environmental factors such as UV, temperature, humidity, etc on composite insulator.

  • PDF

Effects of thermal aging on mechanical properties of laminated lead and natural rubber bearing

  • Kim, Dookie;Oh, Ju;Do, Jeongyun;Park, Jinyoung
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.127-140
    • /
    • 2014
  • Laminated rubber bearing is very popular base isolation of earthquake engineering pertaining to the passive structural vibration control technologies. Rubber used in fabricating NRB and LRB can be easily attacked by various environmental factors such as oxygen, heat, light, dynamic strain, and organic liquids. Among these factors, this study carried out thermal aging test to investigate the effect of thermal aging on the mechanical properties of laminated rubber bearings in accelerated exposure condition of $70^{\circ}C$ temperature for 168 hours. The compressive-shear test was carried out to identify the variation of compressive and shear properties of the rubber bearings before and after thermal aging. In contrast to tensile strength and elongation tests, the hardness of rubber materials showed the increasing tendency dependent on exposure temperature and period. Based on the test results, the property changes of rubber bearing mainly aged by heat are quantitatively presented.

A Study of Life about Naturally Aged Nitrocellulose by Storage (자연 노화된 니트로셀룰로오스의 수명에 관한 연구)

  • Kim, Dong-seong;Jin, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.595-601
    • /
    • 2020
  • During the safety inspection of nitrocellulose-made explosive containers stored for more than 10 years, cracks were found in the containers. Therefore, a failure cause analysis test was performed. First, the cause of failure through the failure tree analysis was conducted to select the factors that influenced failure. The changes in the properties of the container caused by the acceleration of the reaction were found to be the cause of the failure by confirming the influence on the environment and internal/external factors that may occur during storage. To confirm this, environmental tests, such as thermal shock test and vacuum thermal stability test, were performed using a naturally aged container to analyze the cause of failure, and an accelerated aging test was performed to reproduce the failure. Through this, the chemical reaction was accelerated by heat and charge, as in the result of the fault tree analysis, and it was confirmed that the physical properties of the container were changed. In addition, the service life of the container was estimated using the Arrhenius model for the storage life due to thermal aging.

Changes in Insulation Performance of Organic Insulating Materials for Building Construction by Accelerated Durability Test Conditions (가속내구성 조건에 따른 건축용 유기계 단열재의 단열성능 변화)

  • Lim, Soon-Hyun;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.595-601
    • /
    • 2016
  • The insulation performance of the insulation currently used in building structures is reflected only during design based on initial performance and the reduction in heat insulation performance due to the degradation of long-term durability is not reflected. This study reviewed the degradation of heat insulation performance due to the durability degradation of insulating materials through the accelerated durability test. The study findings showed that the foamed polystyrene insulation bead method did not show performance degradation due to aging in the standard environmental condition and laboratory accelerated test condition but the performance is degraded in the freeze-thaw test condition. On the other hand, in the case of the extrusion method, the degradation of the heat insulation performance was less in the freeze-thaw test condition, but the rapid performance degradation was caused by the release of the internal gas at the beginning of aging. In addition, the hard polyurethane foam insulation showed better initial insulation performance than other insulation materials, but the performance was found to be degraded somewhat under laboratory accelerated test conditions and freeze-thaw test conditions.

Aging Characteristics of Composite Materials in Carbody of Tilting Train using Accelerated Aging Test (가속노화시험을 이용한 틸팅차량 차체 복합재의 노화특성)

  • Yoon Sung-Ho;Kim Yong-Goo;Nam Jung-pyo;Shin Kwang-Bok;Koo Dong-Hoe
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.333-338
    • /
    • 2003
  • Polymeric composite structures used in ground transportation applications such as the carbody of tilting train may be exposed to a ground environmental conditions during long-term missions. In this study, the degradation of mechanical and physical properties of graphite/epoxy composite and glass fabric/phenol composite under ground environmental conditions was investigated. Accelerated environmental conditions of ultraviolet radiation, temperature, and moisture were considered. Several types of specimens were used to investigate the effects of environmental conditions on mechanical properties of the composites. Also, storage shear modulus, loss shear modulus, and tan 8 were measured as a function of exposure times through a dynamic mechanical analyzer. Finally, composite surfaces exposed to environmental conditions were examined using a scanning electron microscope.

  • PDF

Effects of Combined Environmental Factors on Mechanical and Thermal Analysis Properties of Graphite/Epoxy Composites (복합적인 환경인자가 탄소섬유강화 복합재의 기계적 및 열분석 특성에 미치는 영향)

  • Lee, Sang-Jin;Lee, Jong-Keun;Yoon, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1416-1425
    • /
    • 2002
  • In this study, the effects of combined environmental factors on mechanical and thermal analysis properties of graphite/epoxy composites were evaluated by the use of an accelerated aging test. Environmental factors such as temperature, moisture. and ultraviolet were considered. A xenon-arc lamp was utilized for ultraviolet light. and exposure times of up to 3000 hours were applied. Several types of specimens - tensile. bending, and shear specimens those are transverse to the fiber direction, and bending specimens those are parallel to the tiber direction - were used to investigate the effects of environmental factors on mechanical properties of the composites. Also, glass transition temperature, storage shear modulus, loss shear modulus, and tan ${\delta}$ were measured as a function of exposure times through a dynamic mechanical analyzer. In addition. a suitable testing method for determining the effect of environmental factors on mechanical properties is suggested by comparing the results from using two different types of strain measuring sensors. Finally, composite surfaces exposed to environmental factors were examined using a scanning electron microscope.

Properties of Electrical Performance on Stator Coil of Traction Motor by Accelerated lest using Transient Surge (과도서지를 이용한 가속열화 시험법에 따른 견인전동기 고정자 코일의 전기적 특성 변화)

  • 박현준;장동욱;이길헌;최종선;김저우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.783-789
    • /
    • 2003
  • The winding problems of traction motor are the major determinant of motor's life. The root cause of winding failure is gradual deterioration of the insulation due to thermal, electrical, mechanical and environmental stresses. The aging of the insulation reduces the electrical and mechanical strength of the insulation. At same point, a voltage surge or mechanical shock from a traction motor start will fracture or break down the insulation. To achieve the expected life usually requires extensive laboratory evaluation of the insulation systems and the use of accelerated aging tests. There are several nondestructive test available for checking, the condition of motor insulation, the probable extent of aging, and the rate of which aging is taking place. So the insulation characteristics of stator coil were each analyzed by measurement of dielectric loss(tan$\sigma$), capacitance and partial discharge. The method of diagnosis is able to analyze the insulation condition and evaluate the life of the traction motor.