• Title/Summary/Keyword: Academic analytics

Search Result 33, Processing Time 0.026 seconds

Investigation on the Effect of Multi-Vector Document Embedding for Interdisciplinary Knowledge Representation

  • Park, Jongin;Kim, Namgyu
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.99-116
    • /
    • 2020
  • Text is the most widely used means of exchanging or expressing knowledge and information in the real world. Recently, researches on structuring unstructured text data for text analysis have been actively performed. One of the most representative document embedding method (i.e. doc2Vec) generates a single vector for each document using the whole corpus included in the document. This causes a limitation that the document vector is affected by not only core words but also other miscellaneous words. Additionally, the traditional document embedding algorithms map each document into only one vector. Therefore, it is not easy to represent a complex document with interdisciplinary subjects into a single vector properly by the traditional approach. In this paper, we introduce a multi-vector document embedding method to overcome these limitations of the traditional document embedding methods. After introducing the previous study on multi-vector document embedding, we visually analyze the effects of the multi-vector document embedding method. Firstly, the new method vectorizes the document using only predefined keywords instead of the entire words. Secondly, the new method decomposes various subjects included in the document and generates multiple vectors for each document. The experiments for about three thousands of academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the multi-vector based method, we ascertained that the information and knowledge in complex documents can be represented more accurately by eliminating the interference among subjects.

Research on the Strategic Use of AI and Big Data in the Food Industry to Drive Consumer Engagement and Market Growth

  • Taek Yong YOO;Seong-Soo CHA
    • The Korean Journal of Food & Health Convergence
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Purpose: The research aims to address the intricacies of AI and Big Data application within the food industry. This study explores the strategic implementation of AI and Big Data in the food industry. The study seeks to understand how these technologies can be employed to bolster consumer engagement and contribute to market expansion, while considering ethical implications. Research Method: This research employs a comprehensive approach, analyzing current trends, case studies, and existing academic literature. It focuses on the application of AI and Big Data in areas such as supply chain management, consumer behavior analysis, and personalized marketing strategies. Results: The study finds that AI and Big Data significantly enhance market analytics, consumer personalization, and market trend prediction. It highlights the potential of these technologies in creating more efficient supply chains, improving consumer satisfaction through personalization, and providing valuable market insights. Conclusion and Implications: The paper offers actionable insights and recommendations for the effective implementation of AI and Big Data strategies in the food industry. It emphasizes the need for ethical considerations, particularly in data privacy and the transparency of AI algorithms. The study also explores future trends, suggesting that AI and Big Data will continue to revolutionize the industry, emphasizing sustainability, efficiency, and consumer-centric practices.

A Study on User Behavior of University Library Website based Big Data: Focusing on the Library of C University (빅데이터 기반 대학도서관 웹사이트 이용행태에 관한 연구: C대학교 도서관을 중심으로)

  • Lee, Sun Woo;Chang, Woo Kwon
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.3
    • /
    • pp.149-174
    • /
    • 2019
  • This study analyzes the actual use data of the websites of university libraries, analyzes the users' usage behavior, and proposes improvement measures for the websites. The study analyzed users' traffic and analyzed their usage behavior from January 2018 to December 2018 on the C University website. The website's analysis tool used 'Google Analytics'. The web traffic variables were analyzed in five categories: user general characteristics, user environment analysis, visit analysis, inflow analysis, site analysis, and site analysis based on the metrics of sessions, users, page views, pages per session, average session time, and bounce rate. As a result, 1) In the analysis results of general characteristics of users, there was some access to the website not only in Korea but also in China. 2) In the user experience analysis, the main browser type appeared as Internet Explorer. The next place was Chrome, with a bounce rate of Safari, third and fourth, double that of the Explore or Chrome. In terms of screen resolution, 1920x1080 resolution accounted for the largest percentage, with access in a variety of other environments. 3) Direct inflow was the highest in the inflow media analysis. 4) The site analysis showed the most page views out of 4,534,084 pages, followed by the main page, followed by the lending/extension/history/booking page, the academic DB page, and the collection page.

Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE (건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여)

  • Haryeom Jang;Jeesoo You;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.57-84
    • /
    • 2023
  • With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified 'recommender system', 'wireless & IoT', 'computer vision', and 'text mining' as increasingly important research fields related to HRS research, and confirmed that 'personalization' and 'privacy' are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.

Study for Prediction System of Learning Achievements of Cyber University Students using Deep Learning based on Autoencoder (오토인코더에 기반한 딥러닝을 이용한 사이버대학교 학생의 학업 성취도 예측 분석 시스템 연구)

  • Lee, Hyun-Jin
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1115-1121
    • /
    • 2018
  • In this paper, we have studied a data analysis method by deep learning to predict learning achievements based on accumulated data in cyber university learning management system. By predicting learner's academic achievement, it can be used as a tool to enhance learner's learning and improve the quality of education. In order to improve the accuracy of prediction of learning achievements, the autoencoder based attendance prediction method is developed to improve the prediction performance and deep learning algorithm with ongoing evaluation metrics and predicted attendance are used to predict the final score. In order to verify the prediction results of the proposed method, the final grade was predicted by using the evaluation factor attendance data of the learning process. The experimental result showed that we can predict the learning achievements in the middle of semester.

A Study on the Prediction of Learning Results Using Machine Learning (기계학습을 활용한 대학생 학습결과 예측 연구)

  • Kim, Yeon-Hee;Lim, Soo-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.695-704
    • /
    • 2020
  • Recently, There has been an increasing of utilization IT, and studies have been conducted on predicting learning results. In this study, Learning activity data were collected that could affect learning outcomes by using learning analysis. The survey was conducted at a university in South Chung-Cheong Province from October to December 2018, with 1,062 students taking part in the survey. First, A Hierarchical regression analysis was conducted by organizing a model of individual, academic, and behavioral factors for learning results to ensure the validity of predictors in machine learning. The model of hierarchical regression was significant, and the explanatory power (R2) was shown to increase step by step, so the variables injected were appropriate. In addition, The linear regression analysis method of machine learning was used to determine how predictable learning outcomes are, and its error rate was collected at about 8.4%.

A Study on the Structure of Research Domain for Internet of Things Based on Keyword Analysis (키워드 분석 기반 사물인터넷 연구 도메인 구조 분석)

  • Namn, Su-Hyeon
    • Management & Information Systems Review
    • /
    • v.36 no.1
    • /
    • pp.273-290
    • /
    • 2017
  • Internet of Things (IoT) is considered to be the next wave of Information Technology transformation after the Internet has changed the process of doing business. Since the domain of IoT ranging from the sensor technology to service to the users is wide, the structure of the research domain is not delineated clearly. To do that we suggest to use the Technology Stack Model proposed by Porter et al.(2014) to measure the maturity level of IoT in organizations. Based on the Stack Model, for the general understandings of IoT, we do keyword analyses on the academic papers whose major research issue is IoT. It is found that the current status of IoT application from the perspectives of cloud and big data analytics is not active, meaning that the real value of IoT has not been realized. We also examine the cases which deal with the part of cloud process which is crucial for value accrual. Based on these findings, we suggest the future direction of IoT research. We also propose that IT is to value chain what IoT is to the Stack Model to derive value in organizations.

  • PDF

Internet search analytics for shoulder arthroplasty: what questions are patients asking?

  • Johnathon R. McCormick;Matthew C. Kruchten;Nabil Mehta;Dhanur Damodar;Nolan S. Horner;Kyle D. Carey;Gregory P. Nicholson;Nikhil N. Verma;Grant E. Garrigues
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.1
    • /
    • pp.55-63
    • /
    • 2023
  • Background: Common questions about shoulder arthroplasty (SA) searched online by patients and the quality of this content are unknown. The purpose of this study is to uncover questions SA patients search online and determine types and quality of webpages encountered. Methods: The "People also ask" section of Google Search was queried to return 900 questions and associated webpages for general, anatomic, and reverse SA. Questions and webpages were categorized using the Rothwell classification of questions and assessed for quality using the Journal of the American Medical Association (JAMA) benchmark criteria. Results: According to Rothwell classification, the composition of questions was fact (54.0%), value (24.7%), and policy (21.3%). The most common webpage categories were medical practice (24.6%), academic (23.2%), and medical information sites (14.4%). Journal articles represented 8.9% of results. The average JAMA score for all webpages was 1.69. Journals had the highest average JAMA score (3.91), while medical practice sites had the lowest (0.89). The most common question was, "How long does it take to recover from shoulder replacement?" Conclusions: The most common questions SA patients ask online involve specific postoperative activities and the timeline of recovery. Most information is from low-quality, non-peer-reviewed websites, highlighting the need for improvement in online resources. By understanding the questions patients are asking online, surgeons can tailor preoperative education to common patient concerns and improve postoperative outcomes. Level of evidence: IV.

Relations between Choke Point Types and Cover Pattern Properties in FPS Game Level Design (FPS게임 레벨디자인에서 Choke Point유형과 Cover Pattern속성의 관계)

  • Choi, GyuHyeok;Jin, HyungWoo;Kim, Mijin
    • Journal of Korea Game Society
    • /
    • v.14 no.4
    • /
    • pp.27-36
    • /
    • 2014
  • Accurate information on players, namely player analytics is one of the key factors in a game development environment where a scientific approach to user-oriented game analysis is in the spotlight. This study is intended to examine effects of relations between choke point types and cover pattern properties on level difficulties in FPS games. As for FPS games, interaction between players' behaviors and game levels is higher compared to other genres and choke point types as well as cover pattern properties are key factors of level design. Choke point is the main crossroad that must to pass for achieving the goal and Cover Pattern is the type of object on the level except buildings. Two elements directly or indirectly affect the level of difficulty. This study analyzed 10 types of representative FPS gameplays to classify choke point types and assigned 4 types of cover pattern properties to organize 16 target levels for the experiment. In addition, this study collected and analyzed players' 800 behavior data (video clips) from 5 repetitive plays performed by 10 players. In conclusion, analytical results obtained from the empirical study will contribute to realizing systematic game level development by providing specific information for a game level design phase. The findings are also meaningful in that they suggest efficient and effective methods of utilizing the existing academic study results for industrial applications.

A Study on the Learning Model Based on Digital Transformation (디지털 트랜스포메이션 기반 학습모델 연구)

  • Lee, Jin Gu;Lee, Jae Young;Jung, Il Chan;Kim, Mi Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.765-777
    • /
    • 2022
  • The purpose of this study is to present a digital transformation-based learning model that can be used in universities based on learning digital transformation in order f to be competitive in a rapidly changing environment. Literature review, case study, and focus group interview were conducted and the implications for the learning model from these are as follows. Universities that stand out in related fields are actively using learning analysis to implement dashboards, develop predictive models, and support adaptive learning based on big data, They also have actively introduced advanced edutech to classes. In addition, problems and difficulties faced by other universities and K University when implementing digital transformation were also confirmed. Based on these findings, a digital transformation-based learning model of K University was developed. This model consists of four dimensions: diagnosis, recommendation, learning, and success. It allows students to proceed with learning by diagnosing and recommending various learning processes necessary for individual success, and systematically managing learning outcomes. Finally, academic and practical implications about the research results were discussed.