• 제목/요약/키워드: Academic analytics

검색결과 33건 처리시간 0.059초

Comparisons on Clustering Methods: Use of LMS Log Variables on Academic Courses

  • Jo, Il-Hyun;PARK, Yeonjeong;SONG, Jongwoo
    • Educational Technology International
    • /
    • 제18권2호
    • /
    • pp.159-191
    • /
    • 2017
  • Academic analytics guides university decision-makers to assign limited resources more effectively. Especially, diverse academic courses clustered by the usage patterns and levels on Learning Management System(LMS) help understanding instructors' pedagogical approach and the integration level of technologies. Further, the clustering results can contribute deciding proper range and levels of financial and technical supports. However, in spite of diverse analytic methodologies, clustering analysis methods often provide different results. The purpose of this study is to present implications by using three different clustering analysis including Gaussian Mixture Model, K-Means clustering, and Hierarchical clustering. As a case, we have clustered academic courses based on the usage levels and patterns of LMS in higher education using those three clustering techniques. In this study, 2,639 courses opened during 2013 fall semester in a large private university located in South Korea were analyzed with 13 observation variables that represent the characteristics of academic courses. The results of analysis show that the strengths and weakness of each clustering analysis and suggest that academic leaders and university staff should look into the usage levels and patterns of LMS with more elaborated view and take an integrated approach with different analytic methods for their strategic decision on development of LMS.

The Impact of Business Intelligence on the Relationship Between Big Data Analytics and Financial Performance: An Empirical Study in Egypt

  • Mostafa Zaki, HUSSEIN;Samhi Abdelaty, DIFALLA;Hussein Abdelaal, SALEM
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제10권2호
    • /
    • pp.15-27
    • /
    • 2023
  • The purpose of this research is to investigate the impact of Business Intelligence (BI) on the relation between Big Data Analytics (BDA) and Financial Performance (FP), at the beginning we reviewed the academic accounting and finance literature to develop the theoretical framework of business intelligence, big data and financial performance in terms of definition, motivations and theories, then we conduct an empirical analysis based on questionnaire-base survey data collected. The researchers identified the study population in the joint-stock companies listed on the Egyptian Stock Exchange and operating in the sectors and activities related to modern technologies in information systems, big data analytics, and business intelligence, in addition to the auditing offices that review the financial reports of these companies, and The sector closest to the research objective is the communications, media, and information technology sector, where the survey list was distributed among the sample companies with (15) lists for each company, and (15) lists for each audit office, so that the total sample becomes (120) individuals (with a response rate 83.3%), The results show, First, Big data analytics significantly affect organizations' financial performance, second, Business intelligence mediates (partial) the relationship between big data analytics and financial performance.

Key Themes for Multi-Stage Business Analytics Adoption in Organizations

  • Amit Kumar;Bala Krishnamoorthy;Divakar B Kamath
    • Asia pacific journal of information systems
    • /
    • 제30권2호
    • /
    • pp.397-419
    • /
    • 2020
  • Business analytics is a management tool for achieving significant business performance improvements. Many organizations fail to or only partially achieve their business objectives and goals from business analytics. Business analytics adoption is a multi-stage complex activity consisting of evaluation, adoption, and assimilation stages. Several research papers have been published in the field of business analytics, but the research on multi-stage BA adoption is fewer in number. This study contributes to the scant literature on the multi-stage adoption model by identifying the critical themes for evaluation, adoption, and assimilation stages of business analytics. This study uses the thematic content analysis of peer-reviewed published academic papers as a research technique to explore the key themes of business analytics adoption. This study links the critical themes with the popular theoretical foundations: Resource-Based View (RBV), Dynamic Capabilities, Diffusion of Innovations, and Technology-Organizational-Environmental (TOE) framework. The study identifies twelve major factors categorized into three key themes: organizational characteristics, innovation characteristics, and environmental characteristics. The main organizational factors are top management support, organization data environment, centralized analytics structure, perceived cost, employee skills, and data-based decision making culture. The major innovation characteristics are perceived benefits, complexity, and compatibility, and information technology assets. The environmental factors influencing BA adoption stages are competition and industry pressure. A conceptual framework for the multi-stage BA adoption model is proposed in this study. The findings of this study can assist the practicing managers in developing a stage-wise operational strategy for business analytics adoption. Future research can also attempt to validate the conceptual model proposed in this study.

Big Data in Smart Tourism: A Perspective Article

  • Park, Sangwon
    • Journal of Smart Tourism
    • /
    • 제1권3호
    • /
    • pp.3-5
    • /
    • 2021
  • The advancement of Information Communication Technology has provided tourism researchers with a golden opportunity to access big data, which plays a critical role in smart tourism. Recognizing the current issue, this paper discusses the evolution of the literature on tourism big data focusing on conceptual understanding of and types of big data, and insights from big data analytics. Indeed, this article provides important research agenda for future tourism researchers who would like to conduct academic research about big data and smart tourism.

라쉬 모델을 사용한 본초학 시험의 학업역량 분석 연구 (Study on the Academic Competency Assessment of Herbology Test using Rasch Model)

  • 채한;이수진;한창호;조영일;김형우
    • 대한한의학회지
    • /
    • 제43권2호
    • /
    • pp.27-41
    • /
    • 2022
  • Objectives: There should be an objective analysis on the academic competency for incorporating Computer-based Test (CBT) in the education of traditional Korean medicine (TKM). However, the Item Response Theory (IRT) for analyzing latent competency has not been introduced for its difficulty in calculation, interpretation and utilization. Methods: The current study analyzed responses of 390 students of 8 years to the herbology test with 14 items by utilizing Rasch model, and the characteristics of test and items were evaluated by using characteristic curve, information curve, difficulty, academic competency, and test score. The academic competency of the students across gender and years were presented with scale characteristic curve, Kernel density map, and Wright map, and examined based on T-test and ANOVA. Results: The estimated item, test, and ability parameters based on Rasch model provided reliable information on academic competency, and organized insights on students, test and items not available with test score calculated by the summation of item scores. The test showed acceptable validity for analyzing academic competency, but some of items revealed difficulty parameters to be modified with Wright map. The gender difference was not distinctive, however the differences between test years were obvious with Kernel density map. Conclusion: The current study analyzed the responses in the herbology test for measuring academic competency in the education of TKM using Rasch model, and structured analysis for competency-based Teaching in the e-learning era was suggested. It would provide the foundation for the learning analytics essential for self-directed learning and competency adaptive learning in TKM.

A Critical Analysis of Learning Technologies and Informal Learning in Online Social Networks Using Learning Analytics

  • Audu Kafwa Dodo;Ezekiel Uzor OKike
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.71-84
    • /
    • 2024
  • This paper presents a critical analysis of the current application of big data in higher education and how Learning Analytics (LA), and Educational Data Mining (EDM) are helping to shape learning in higher education institutions that have applied the concepts successfully. An extensive literature review of Learning Analytics, Educational Data Mining, Learning Management Systems, Informal Learning and Online Social Networks are presented to understand their usage and trends in higher education pedagogy taking advantage of 21st century educational technologies and platforms. The roles of and benefits of these technologies in teaching and learning are critically examined. Imperatively, this study provides vital information for education stakeholders on the significance of establishing a teaching and learning agenda that takes advantage of today's educational relevant technologies to promote teaching and learning while also acknowledging the difficulties of 21st-century learning. Aside from the roles and benefits of these technologies, the review highlights major challenges and research needs apparent in the use and application of these technologies. It appears that there is lack of research understanding in the challenges and utilization of data effectively for learning analytics, despite the massive educational data generated by high institutions. Also due to the growing importance of LA, there appears to be a serious lack of academic research that explore the application and impact of LA in high institution, especially in the context of informal online social network learning. In addition, high institution managers seem not to understand the emerging trends of LA which could be useful in the running of higher education. Though LA is viewed as a complex and expensive technology that will culturally change the future of high institution, the question that comes to mind is whether the use of LA in relation to informal learning in online social network is really what is expected? A study to analyze and evaluate the elements that influence high usage of OSN is also needed in the African context. It is high time African Universities paid attention to the application and use of these technologies to create a simplified learning approach occasioned by the use of these technologies.

SW 코딩교육에서의 학습분석기반 플립러닝의 학습효과 (Learning Effects of Flipped Learning based on Learning Analytics in SW Coding Education)

  • 피수영
    • 디지털융복합연구
    • /
    • 제18권11호
    • /
    • pp.19-29
    • /
    • 2020
  • 본 연구는 비전공자 학생들 대상으로 효과적인 프로그래밍 학습이 가능하도록 학습 분석을 활용한 플립러닝 교수법의 효과성을 살펴보고자 한다. ADDIE모형을 적용한 플립러닝 프로그래밍 수업모형을 설계한 후 본교에서 운영하고 있는 강의지원시스템의 학습관련 자료를 크롤링하였다. 크롤링 자료를 교수자가 쉽게 이해할 수 있도록 대시보드로 제공하여 교수자는 이를 바탕으로 수업을 보다 효율적으로 설계하여 개별 맞춤 학습이 가능하도록 하였다. 한 학기 수업을 통해 수집된 학습관련 데이터를 바탕으로 분석한 결과 학과, 학년, 출결여부, 과제제출 여부, 예/복습 수강여부가 학업성취도에 영향을 미치는 것으로 나타났으며, 설문 분석결과 학습 분석을 통한 교수자의 개별화된 피드백이 자기주도적 학습에 많은 도움이 되었다고 응답하였다. 본 연구는 학습자의 학습을 촉진시키고 교수자는 교수활동을 개선할 수 있는 기틀을 마련해 주는 계기가 될 것으로 기대한다. 향후 학습자들의 학습과 관련된 소셜네트워크서비스의 내용도 크롤링하여 학습자들의 학습상황을 분석하고자 한다.

처방적 분석 기반의 연구자 맞춤형 연구정보 서비스 설계 (Design of Customized Research Information Service Based on Prescriptive Analytics)

  • 이정원;오용선
    • 사물인터넷융복합논문지
    • /
    • 제8권3호
    • /
    • pp.69-74
    • /
    • 2022
  • 빅데이터 관련 분석 기법에서 처방적 분석 방법론은 적극적인 학습이 양질의 학습 데이터를 확보함으로써 수동적인 학습모델의 성능을 개선하고, 해당 시스템을 최적화하여 성능의 극대화를 통해 처리 프로세싱 과정을 다루며 판단의 근거가 되는 이유를 제시하고 있다. 그리고 범주 정보가 없는 데이터의 경우 기계가 이를 분석하여 애매한 것과 경계지점에 놓인 것들을 찾아내 수동으로 판단하게 하여 값비싼 범주 데이터를 매우 효과적으로 구축하는 방식이다. 연구자 역량을 강화하기 위하여 연구자의 연구 분야, 연구 성향, 연구 활동정보 등을 수집하여 데이터가 가진 가치를 확장하기 위해 데이터 전처리 후 실행 시점의 상황 예측하고 실행 가능한 대안 도출을 통해 상황 변동에 따른 대안 유효성 검토 등 처방적 분석을 통하여 연구자 맞춤형 연구정보 서비스를 제공한다.

빅데이터 분석 기반의 메타스터디를 통해 본 공유경제에 대한 학술연구 동향 분석 (Trends Analysis on Research Articles of the Sharing Economy through a Meta Study Based on Big Data Analytics)

  • 김기연
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.97-107
    • /
    • 2020
  • 본 연구의 목적은 빅데이터 분석기법을 활용하여 공유경제 관련 국내 학술연구 동향을 탐색하기 위해 내용분석 관점에서 종합적 메타스터디를 수행하는데 있다. 종합적 메타분석 연구방법론은 일련의 전체 연구결과물들을 역사적으로 그리고 포괄적으로 살펴봄으로써 전체 연구동향의 규칙성이나 특성을 조명하여, 이를 통해 향후 연구에 대해 방향성을 제시할 수 있다. 공유경제를 주제로 하는 국내 학술연구는 Lawrence Lessig 교수가 2008년에 공유경제의 개념을 세상에 소개한 해에 등장하였으나, 본격적인 연구는 2013년부터 진행되었다. 특히, 2006~2008년 사이에 국내 공유경제 관련 학술연구는 양적으로 급격히 증가하였다. 본 연구는 2013년부터 현재까지 약 8년간의 논문들을 분석 논문으로 선정하고, 전자저널의 학술논문검색 및 원문서비스를 이용하여 제목, 키워드, 초록을 중심으로 텍스트 데이터를 수집하였다. 수집된 데이터를 정제, 분석, 시각화의 순서로 빅데이터 분석을 실시하여, 추출된 핵심어들을 통해 연도별 및 문헌 유형별 연구동향 및 인사이트를 도출하였다. 데이터 전처리 및 텍스트 마이닝, 메트릭스 빈도분석을 위해 Python3.7과 Textom 분석도구를 활용하였고, 핵심어 노드 간의 구조적 연관성을 파악하기 위해 UCINET6/NetDraw, Textom 프로그램 기반의 N-gram 차트, 중심성 및 소셜네트워크 분석, 그리고 CONCOR 클러스터링 시각화를 통해 8개로 군집화 한 키워드들을 토대로 연구동향의 유형별 특성을 발견하였다. 아직까지 사회과학적 관점에서 공유경제 관련 학술연구 동향에 관한 조사가 이루어진 바가 없기 때문에, 본 연구의 결과물은 선행연구로서 후속 연구들에게 이론적 고찰 및 향후 연구방향에 대해 유용한 정보를 제공하는 초석의 역할을 기대할 수 있다.