• Title/Summary/Keyword: Abutment connection

Search Result 157, Processing Time 0.027 seconds

Mechanical analysis of conventional and small diameter conical implant abutments

  • Moris, Izabela Cristina Mauricio;Faria, Adriana Claudia Lapria;De Mattos, Maria Da Gloria Chiarello;Ribeiro, Ricardo Faria;Rodrigues, Renata Cristina Silveira
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.158-161
    • /
    • 2012
  • PURPOSE. The aim of the present study was to evaluate if a smaller morse taper abutment has a negative effect on the fracture resistance of implant-abutment connections under oblique compressive loads compared to a conventional abutment. MATERIALS AND METHODS. Twenty morse taper conventional abutments (4.8 mm diameter) and smaller abutments (3.8 mm diameter) were tightened (20 Ncm) to their respective implants ($3.5{\times}11$ mm) and after a 10 minute interval, implant/abutment assemblies were subjected to static compressive test, performed in a universal test machine with 1 mm/min displacement, at $45^{\circ}$ inclination. The maximum deformation force was determined. Data were statistically analyzed by student t test. RESULTS. Maximum deformation force of 4.8 mm and 3.8 mm abutments was approximately 95.33 kgf and 95.25 kgf, respectively, but no fractures were noted after mechanical test. Statistical analysis demonstrated that the evaluated abutments were statistically similar (P=.230). CONCLUSION. Abutment measuring 3.8 mm in diameter (reduced) presented mechanical properties similar to 4.8 mm (conventional) abutments, enabling its clinical use as indicated.

Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants

  • Mohammed, Hnd Hadi;Lee, Jin-Han;Bae, Ji-Myung;Cho, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. MATERIALS AND METHODS. Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. RESULTS. The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). CONCLUSION. Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading.

Influence of the implant-abutment connection design and diameter on the screw joint stability

  • Shin, Hyon-Mo;Huh, Jung-Bo;Yun, Mi-Jeong;Jeon, Young-Chan;Chang, Brian Myung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.126-132
    • /
    • 2014
  • PURPOSE. This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (${\alpha}$=0.05). RESULTS. The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION. The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.

Finite element analysis on the connection types of abutment and fixture (수종의 내부연결형 임플란트에서 연결부의 형태에 따른 응력분포의 유한요소 분석)

  • Jung, Byeong-Hyeon;Lee, Gyeong-Je;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.119-127
    • /
    • 2012
  • Purpose: This study was performed to compare the stress distribution pattern of abutment-fixture connection area using 3-dimensional finite element model analysis when 5 different implant systems which have internal connection. Materials and methods: For the analysis, a finite element model of implant was designed to locate at first molar area. Stress distribution was observed when vertical load of 200 N was applied at several points on the occlusal surfaces of the implants, including center, points 1.5 mm, 3.0 mm away from center and oblique load of 200 N was applied $30^{\circ}$ inclined to the implant axis. The finite element model was analyzed by using of 3G. Author (PlassoTech, California, USA). Results: The DAS tech implant (internal step with no taper) showed more favorable stress distribution than other internally connected implants. AS compare to the situations when the loading was applied within the boundary of implants and an oblique loading was applied, it showed higher equivalent stress and equivalent elastic strain when the loading was applied beyond the boundary of implants. Regardless of loading condition, the abutments showed higher equivalent stress and equivalent elastic strain than the fixtures. Conclusion: When the occlusal contact is afforded, the distribution of stress varies depending on the design of connection area and the location of loading. More favorable stress distribution is expected when the contact load was applied within the diameter of fixtures and the DAS tech implant (internal step with no tapering) has more benefits than the other design of internally connected implants.

Influence of the connection design and titanium grades of the implant complex on resistance under static loading

  • Park, Su-Jung;Lee, Suk-Won;Leesungbok, Richard;Ahn, Su-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.388-395
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the resistance to deformation under static overloading by measuring yield and fracture strength, and to analyze the failure characteristics of implant assemblies made of different titanium grades and connections. MATERIALS AND METHODS. Six groups of implant assemblies were fabricated according to ISO 14801 (n=10). These consisted of the combinations of 3 platform connections (external, internal, and morse tapered) and 2 materials (titanium grade 2 and titanium grade 4). Yield strength and fracture strength were evaluated with a computer-controlled Universal Testing Machine, and failed implant assemblies were classified and analyzed by optical microscopy. The data were analyzed using the One-way analysis of variance (ANOVA) and Student's t-test with the level of significance at P=.05. RESULTS. The group $IT4_S$ had the significantly highest values and group IT2 the lowest, for both yield strength and fracture strength. Groups $IT4_N$ and ET4 had similar yield and fracture strengths despite having different connection designs. Group MT2 and group IT2 had significant differences in yield and fracture strength although they were made by the same material as titanium grade 2. The implant system of the similar fixture-abutment interfaces and the same materials showed the similar characteristics of deformation. CONCLUSION. A longer internal connection and titanium grade 4 of the implant system is advantageous for static overloading condition. However, it is not only the connection design that affects the stability. The strength of the titanium grade as material is also important since it affects the implant stability. When using the implant system made of titanium grade 2, a larger diameter fixture should be selected in order to provide enough strength to withstand overloading.

Application of Horizontal Subgrade Reaction Modulus to Bridge Abutment Design after Soil Improvement (연약지반 개량후 교대구간 수평지반반력계수 적용 사례)

  • Kim, Kyung-Tae;Park, See-Boum;Kim, Chang-Hyun;Lee, Jong-Bum;Yoon, Yea-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1228-1236
    • /
    • 2006
  • In soft ground, There are many case that Bridge Abutment is constructed after soil improvement in order to reduce the Negative Friction and prevent from Lateral Soil movements of Bridge Abutment. That section of Horizontal Subgrade Reaction $Modulus(K_h)$ derivation has much important mean due to Horizontal Stability of Abutment. It is come from behavior of Pile and Soil within depth of $1/\beta$. After Soil Improvement, however, If Bridge Abutment was construction, It's not impossible to carry out Field Investigation After Ground of Improved at design stage. Therefore, It's not able to derivate Horizontal Subgrade Reaction $Modulus(K_h)$. Therefore, in this case of study compare with Field Construction Test Data in order to derivation of Horizontal Subgrade Reaction $Modulus(K_h)$ and Reliability in terms of ground of Bridge Abutment by Sand Compaction Pile(SCP) during design of The 2nd Bridge Connection Road of Incheon International Airport. In this paper determine, Soil Property(The rate of strength increase, $c_u$ so on) and Horizontal Subgrade Reaction $Modulus(K_h)$ after soil improvement at design stage.

  • PDF

The influence of the implant-abutment complex on marginal bone and peri-implant conditions: A retrospective study

  • Tokgoz, Selen Ergin;Bilhan, Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.46-54
    • /
    • 2021
  • Purpose. The design of the implant-abutment complex is thought to be responsible for marginal bone loss (MBL) and might affect the condition of the peri-implant tissues. This the present study aimed to evaluate the influence of the implant-abutment complex on MBL and the peri-implant tissues in partially edentulous patients treated with dental implants and determine the most advantageous design. Materials and Methods. A total of ninety-one endosseous implants with different designs of implant-abutment complex [tissue level-TL (n = 30), platform switch-PS (n = 18), and platform match-PM (n = 43)] were reviewed for MBL, Probing Pocket Depth (PPD) and Bleeding on Probing (BoP). MBL was calculated for first year of the insertion and the following years. Results. The median MBL for the PM implants (2.66 ± 1.67 mm; n = 43) in the first year was significantly higher than those for the other types (P=.033). The lowest rate of MBL (0.61 ± 0.44 mm; n = 18) was observed with PS implants (P=.000). The position of the crown-abutment border showed a statistically significant influence (P=.019) and a negative correlation (r=-0.395) on MBL. BoP was found significantly higher in PM implants (P=.006). The lowest BoP scores were detected in PS implants, but the difference was not significant (P=.523). The relation between PPD and connection type revealed no statistically significant influence (P>.05). Conclusion. Within the limitations of the present study, it may be concluded that PS implants seem to show better peri-implant soft tissue conditions and cause less MBL.

Structural Performance Evaluation on Ended Block of Wide Flange PSC Girder for the Semi-Integral Bridges (광폭 플랜지 PSC 거더 단부 프리캐스트 블록을 활용한 반일체식교대교량의 구조성능 평가)

  • Ka, Hoon;Choi, Jin-Woo;Kim, Young-Ho;Park, Jong-Myen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Semi-integral abutment bridges are a type of integral abutment bridges. These bridges eliminate expansion joints on the structure and can be used in situations not suitable for full-integral abutment bridge. Moreover, Semi-integral bridges have excellent maintenance and can be economically constructed. This study is about precast wall-type blocks at each end which provide lateral support for PSC girder, as well as acting as retaining walls to resist longitudinal movement of semi-integral abutment bridge. The end-diaphragm connection between ended blocks of PSC girders can be achieved by in-suit nonshrinkage concrete. The results show that 3-point experiment of end-diaphragm beam have an acceptable performance which is so better than results of structural design. Moreover, the effects of backfill soil on semi-integral abutment bridge constructed are analyzed the behavior according to the temperature changes.

Physical and mechanical changes on titanium base of three different types of hybrid abutment after cyclic loading

  • Rimantas Oziunas;Jurgina Sakalauskiene;Laurynas Staisiunas;Gediminas Zekonis;Juozas Zilinskas;Gintaras Januzis
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.1
    • /
    • pp.33-43
    • /
    • 2023
  • PURPOSE. This study investigated the physical and mechanical changes in the titanium base of three different hybrid abutment materials after cyclic loading by estimating the post-load reverse torque value (RTV), compressive side fulcrum wear pattern of titanium base, and surface roughness. MATERIALS AND METHODS. A total of 24 dental implants were divided into three groups (n = 8 each): Group Z, LD, and P used zirconia, lithium disilicate, and polyetheretherketone, respectively, for hybrid abutment fabrication. RTV was evaluated after cyclic loading with 50 N for 1.2 × 106 chewing cycles. The compressive sides of the titanium bases were analyzed using a scanning electron microscope, and the roughness of the affected areas was measured using an optical profilometer after loading. Datasets were analyzed using Kruskal-Wallis test followed by Mann-Whitney tests with the Bonferroni correction (α = .05). RESULTS. Twenty-three samples passed the test; one LD sample fractured after 770,474 cycles. Post-load RTV varied significantly depending on the hybridabutment material (P = .020). Group P had a significantly higher median of post-load RTVs than group Z (16.5 and 14.3 Ncm, respectively). Groups LD and P showed minor signs of wear, and group Z showed a more pronounced wear pattern. While evaluating compressive side affected area roughness of titanium bases, lower medians were shown in group LD (Ra 0.16 and Rq 0.22 ㎛) and group P (Ra 0.16 and Rq 0.23 ㎛) than in group Z (Ra 0.26 and Rq 0.34 ㎛); significant differences were found only among the unaffected surface and group Z. CONCLUSION. The hybrid abutment material influences the post-load RTV. Group Z had a more pronounced wear pattern on the compressive side of titanium base; however, the surface roughness was not statistically different among the hybridabutment groups.

The incidence of the abutment screw loosening and its affecting factors in posterior implant restorations (구치부 임플란트 고정성 수복물에서의 지대주 나사 풀림 현상과 이에 영향을 미치는 요인)

  • Hong, Su-Jung;Bae, Jung-Yoon;Kim, Hyun-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.212-217
    • /
    • 2018
  • Purpose: This study was to assess clinically the incidence of abutment screw loosening of posterior implant-supported fixed prosthesis and its affecting factors. Materials and methods: 391 implant-supported crowns restored from January 2013 to January 2016 were included in this study. All restorations were fabricated with either a single crowns or a splinted crown, and cemented with temporary cement. The incidence of abutment screw loosening is investigated and gender, restoration position, opposing teeth, restoration type, abutment connection type were assessed as possible factors affecting abutment screw loosening. Results: During the observation period (2 - 5 years), abutment screw loosening was found in 29 restorations (7.4%). It took 3 to 48 months (means 19.5 months) to loose the screw, and three of these implants were fractured. Among the factors considered, there were statistically significant differences at abutment screw loosening rate between molar group (9.4%) and premolar group (2.6%) (P<.019). According to the type of opposing teeth, there were statistically significant differences between nature teeth (74.7%) and implant (25.0%), removable denture (3%) (P<.019). The other possible factors did not have a significant effect on loosening of the abutment. Conclusion: The incidence of abutment screw loosening in posterior restoration was 7.4%. Abutment screw loosening were more likely to occur in molars group than premolar group, and according to the opposing teeth, there were the greatest frequency in nature teeth than implant and removal denture. There was a statistically significant difference.