• Title/Summary/Keyword: Absorption-desorption

Search Result 164, Processing Time 0.023 seconds

Effects of Halide Anions to Absorb SO2 in Ionic Liquids

  • Lee, Ki-Young;Kim, Chang-Soo;Kim, Hong-Gon;Cheong, Min-Serk;Mukherjee, Deb Kumar;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1937-1940
    • /
    • 2010
  • Ionic liquids with halide anions were prepared and the dependency of halide anions on the $SO_2$ solubility of ILs was investigated. The study shows that the $SO_2$ solubility of ionic liquids lies in the range 1.91~2.22 $SO_2$/ILs mol ratio. $SO_2$ solubility in ionic liquids with varying halide anions follows the order Br > Cl > I. Theoretical investigation was also conducted at the B3LYP level using the Gaussian 03 program. From the theoretical consideration of the interaction between $SO_2$ and [EMIm]X (where X = Cl, Br, and I), it has been proposed that primary interaction of halide occurs with $C_2$-H of the imidazolium and S of $SO_2$. Experimental results further shows that the absorption and desorption process of $SO_2$ in ILs was reversible by the three cycles of the absorption at $50^{\circ}C$ and desorption at $140^{\circ}C$. The reversibility of $SO_2$ absorption was confirmed by FT-IR studies.

Hydrogen Absorption by Crystalline Semiconductors: Si(100), (110) and (111)

  • Jeong, Min-Bok;Jo, Sam-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.383-383
    • /
    • 2010
  • Gas-phase hydrogen atoms create a variety of chemical and physical phenomena on Si surfaces: adsorption, abstraction of pre-adsorbed H, Si etching, Si amorphization, and penetration into the bulk lattice. Thermal desorption/evolution analyses exhibited three distinct peaks, including one from the crystalline bulk. It was previously found that thermal-energy gaseous H(g) atoms penetrate into the Si(100) crystalline bulk within a narrow substrate temperature window(centered at ~460K) and remain trapped in the bulk lattice before evolving out at a temperature as high as ~900K. Developing and sustaining atomic-scale surface roughness, by H-induced silicon etching, is a prerequisite for H absorption and determines the $T_s$ windows. Issues on the H(g) absorption to be further clarified are: (1) the role of the detailed atomic surface structure, together with other experimental conditions, (2) the particular physical lattice sites occupied by, and (3) the chemical nature of, absorbed H(g) atoms. This work has investigated and compared the thermal H(g) atom absorptivity of Si(100), Si(111) and Si(110) samples in detail by using the temperature programmed desorption mass spectrometry (TPD-MS). Due to the differences in the atomic structures of, and in the facility of creating atom-scale etch pits on, Si(100), (100) and (110) surfaces, the H-absorption efficiency was found to be larger in the order of Si(100) > Si(111) > Si(110) with a relative ratio of 1 : 0.22 : 0.045. This intriguing result was interpreted in terms of the atomic-scale surface roughening and kinetic competition among H(g) adsorption, H(a)-by-H(g) abstraction, $SiH_3(a)$-by-H(g) etching, and H(g) penetraion into the crystalline silicon bulk.

  • PDF

Absorption of d-Limonene in Orange Juice into a Laminated Food Package Studied with a Solid Phase Micro-extraction Method

  • Lee, Hahn-Bit;Yang, Hee-Jae;Min, Sea-C.
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.354-358
    • /
    • 2010
  • The methods for determining the diffusion parameters for the diffusion of d-limonene, a major volatile compound of orange juice, through a multi-layered food packaging material and predicting its absorption into the packaging material have been investigated. The packaging material used was the 1.5-mm thick multi-layered packaging material composed of high impact polystyrene (HIPS), polyvinylidene chloride (PVDC), and low density polyethylene (LDPE). Orange juice was placed in a cell where volatiles were absorbed in the sample package and kept at $23{\pm}2^{\circ}C$ for 72 hr. The d-limonene absorbed in a 1.5-mm thick multi-layered food packaging material was analyzed by a solid phase micro-extraction (SPME). The absorption parameters for the absorption of d-limonene in the packaging material were determined and absorption of d-limonene into the packaging material was predicted using absorption storage data. The SPME desorption at $60^{\circ}C$ for 1 hr resulted in the most sensitive and reproducible results. The diffusion coefficients of d-limonene in the packaging material and the partition coefficient at $23{\pm}2^{\circ}C$ were approximately $1-2{\times}10^{12}m^2$/s and 0.03, respectively. The absorption profile no earlier than 30 hr was fit well by a model derived from the Fick's law.

Reliability Evaluation Through Moisture Sorption Characterization of Electronic Packaging Materials (전자 패키징 소재의 수착 특성화를 통한 신뢰성 평가)

  • Park, Heejin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1151-1158
    • /
    • 2013
  • Knowledge of the moisture sorption properties of a material is essential for optimal material development and analysis of the delamination failure caused by vapor pressure at the interlayer during the manufacturing process of integrated packaging devices. In this paper, both temperature dependent absorption and desorption properties according to temperature and humidity model are parameterized and the effects of water activities and temperature are discussed. The activation energy obtained from the parameterized diffusivity determines the acceleration factor for the equivalency of moisture sorption levels, which enables the effect of moisture diffusivity on the equivalent elapsed testing time required for evaluating the reliable life time to be estimated. The acceleration factor evaluated at the reliability testing standard of the flexible packaging module is exampled.

The thermal cycling stability of V-Ti based alloy

  • Park, Jeoung-Gun;Kim, Dong-Myung;Jang, Kuk-Jin;Han, Jai-Sung;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.3
    • /
    • pp.111-118
    • /
    • 1998
  • The intrinsic degradation behavior of $(V_{0.53}Ti_{0.47})_{0.925}Fe_{0.075}$ alloy with BCC structure and the two plateau regions (the low and high plateau region) has been investigate during the temperature-induced hydrogen absorption-desorption cycling (thermal cycling). After 400 thermal cycles between room temperature and $600^{\circ}C$ under 10atm $H_2$, the total reversible hydrogen absorption capacity decreased by about 40%. From thermal desorption analysis it was found that the degradation behavior at each plateau region was different. In addition, XRD analysis showed that the crystal structure of the sample in de-hydrided state was changed from BCC to BCT after degradation, and that of the sample in hydrided state it was maintained as FCC although peaks were broadened after degradation. From the result of static isothermal hydrogenation treatment it were found that crystal structure change from BCC to BCT was caused by the thermal energy. TEM analysis showed that the peak broadening was due to the formation of an amorphous phase in FCC matrix.

  • PDF

A Study of Application on the Pulsating Heat Pipe for Heat Transfer Enhancement of Metal Hydride Alloy (수소 저장합금층의 열전달 촉진을 위한 진동형 히트 파이프 적용에 관한 연구)

  • Lee, Min-Jae;Im, Yong-Bin;Bae, Sang-Chul;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.346-351
    • /
    • 2006
  • When metallic alloys are reacted to hydrogen, heat transfer of storage tank effects hydrogen storage rate and capacity. If pulsating heat pipe are used to improve heat transfer efficiency, production of hydrogen storage tank can be more simple and economical. Experiment of heat pipe was conducted by varying working fluids and heat flux. According to supply heat flux, test indicate that R-22 and R-l42b were found lower temperature difference between evaporator and condenser than R-134a and Ethanol. Thermal resistances of R-22 and R-142b were also lower than others. Using R-142b as a working fluid, heat pipe type hydrogen storage tank is tested in absorption and desorption processes.

  • PDF

Hydrogen Desorption and Absorption Properties of MgH2, LiBH4, and MgH2 + LiBH4 Composite

  • Park, Hye Ryoung;Song, Myoung Youp
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.955-959
    • /
    • 2012
  • To increase the hydrogen storage capacity of Mg-based materials, a sample with a composition of 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ was prepared by planetary ball milling under hydrogen. The absorption and desorption properties of unmilled $MgH_2$, unmilled $LiBH_4$, and 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ were examined. At 648 K the unmilled $MgH_2$ desorbed 5.70 wt% for 60 min. The unmilled $LiBH_4$ desorbed 6.40 wt% H for 780 min at 673 K. The 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ sample desorbed 3.10 wt% H for 50 min, and 3.32 wt% H for 300 min at 623 K at the second cycle.

Manufacture of the Hydrophobic HY-type Zeolite-honeycomb and Its Adsorption/Desorption Characteristics for the Benzene, o-xylene, and MEK (소수성 HY-형 제올라이트제 하니컴의 제조 및 그 하니컴의 벤젠, o-xylene, MEK에 대한 흡.탈착특성)

  • Mo, Se-Young;Jeon, Dong-Hwan;Kwon, Ki-Seung;Sohn, Jong-Ryeul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.84-96
    • /
    • 2007
  • We performed the experiments to manufacture the hydrophobic $200cells/in^2$-zeolite honeycomb using HY-type zeolite of Si/Al ratio of 80 for separating and removing the VOCs emitted from small and medium size-plants by adsorption and to determine the drying method for the honeycomb at $105^{\circ}C$ without cracking, then measured performances of the honeycomb to adsorb the benzene, o-xylene, and MEK and to desorb the benzene and MEK saturated on the honeycomb by the nitrogen gas as the desorption gas. As a results, the good honeycomb was formed and the honeycomb was not cracked when the mixing ratio of the zeolite to bentonite to methyl cellulose to polyvinyl alcohol to glycerine to water is 100 : 8.73 : 2.18 : 4.19 : 1.38 : 126 and dried the honeycomb at $105^{\circ}C$ for 24 hours in the drying oven. The shape of the dried honeycomb was not changed after calcination, and the compressive strengths of the honeycomb after drying and calcination were 6.7 and $0.69kg/cm^2$, respectively. The adsorption efficiencies of the honeycomb for benzene, o-xylene, and MEK were $92{\sim}96%$ at the room temperature. The desorption efficiency at $180^{\circ}C$ was higher than that at $150^{\circ}C\;by\;1.5{\sim}13.8%$ depending on the flow rate of the nitrogen gas, and it was found that desorption efficiency is higher than 85% at $180^{\circ}C$ and 1.0L/min of the nitrogen gas. At $180^{\circ}C$ and 0.2 L/min, the concentration of the benzene and MEK in the used desorption gas are higher than 40,000 and 50,000ppm, respectively, so it be used as the fuel for preheating the desorption gas fed into the column in desorption cycle.

Manufacturing of Wood Wool Board Mixed with Waste Paper-Mulberry Fiber and Analysis of Humidity Characteristics (폐닥나무 섬유를 혼입한 목모보드 제조 및 조습특성 분석)

  • Kim, Nam-Il;Jo, Jung-Hun;Seo, Sung-Kwan;Lee, Oh-Kyu;Lee, Hyung-Won;Bae, Sung-Chul;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2021
  • The humidity-control function and manufacturing characteristics of wood-wool boards using waste-paper-mulberry fiber were analyzed in this study. For the manufacture of wood-wool boards, the pulverizing times of waste-paper-mulberry fibers were controlled at 30, 60, 120, and 180 s, and the mixing amounts were controlled by adding 0%, 3%, 6%, and 9%, respectively, as compared to cement. Analysis of the moisture adsorption and desorption characteristics of the wood-wool boards controlled for pulverizing time revealed that the wood-wool board with 60 s of pulverized fiber exhibited the best adsorption and desorption performances. It was estimated that the adsorption and desorption performances of the material itself were adequate even when the boards were mixed because of minimal damage to the fiber. In addition, an analysis of the absorption and desorption characteristics of the fiber-mixture-controlled wood-wool boards showed that the 6%-mixed wood-wool board had the best absorption and desorption performances of 291.00 g/m2 and 108.75 g/m2, respectively.

The Adsorption/Desorption Behavior of Odorous Compounds on Clothing Materials: A Case Study on Reduced Sulfur Compounds (피복류에 대한 냄새성분의 흡탈착 거동특성에 대한 연구: 환원황 성분의 분석을 중심으로)

  • Kim Ki-Hyun;Choi Ye-Jin;Yang H.S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.249-257
    • /
    • 2006
  • In this work, the adsorptive and desorptive behavior of reduced sulfur compounds (RSC) was investigated using the combination of the Peltier cooling (PC)/thermal desorption (TD) unit with the gas chromatographic (GC) detection technique. To examine the adsorptive characteristics of RSC on clothing materials, a total of nine experiments were conducted in a stepwise manner. Once small towel pieces are exposed to significant quantities of RSC standards with high concentrations (10 ppm), the desoprtion stage was then induced by deloading RSC with ultrapure $N_2$ at three different flow rates (FR) of 20, 40, and 60 mL/min. At each FR, the total deloading volume of 400, 800, and 1,600 mL were maintained. These results were then compared in terms of odoring efficiency by dividing the total amount of desorption with the total amount used for exposition or RSC loading. The results indicated that desorption reaction of certain compounds ($CH_3SH$ and DMS) can be influenced significantly with the reducing FR, while they are not affected directly by the total deloading volume. In addition, when the extent of adsorption was compared for most S compounds by the odoring efficiency term, the extent of absorption generally occurred at approximately 1/1000 level of original exposition.