Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.7.1937

Effects of Halide Anions to Absorb SO2 in Ionic Liquids  

Lee, Ki-Young (Clean Energy Research Center, Korea Institute of Science and Technology)
Kim, Chang-Soo (Clean Energy Research Center, Korea Institute of Science and Technology)
Kim, Hong-Gon (Clean Energy Research Center, Korea Institute of Science and Technology)
Cheong, Min-Serk (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University)
Mukherjee, Deb Kumar (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University)
Jung, Kwang-Deog (Clean Energy Research Center, Korea Institute of Science and Technology)
Publication Information
Abstract
Ionic liquids with halide anions were prepared and the dependency of halide anions on the $SO_2$ solubility of ILs was investigated. The study shows that the $SO_2$ solubility of ionic liquids lies in the range 1.91~2.22 $SO_2$/ILs mol ratio. $SO_2$ solubility in ionic liquids with varying halide anions follows the order Br > Cl > I. Theoretical investigation was also conducted at the B3LYP level using the Gaussian 03 program. From the theoretical consideration of the interaction between $SO_2$ and [EMIm]X (where X = Cl, Br, and I), it has been proposed that primary interaction of halide occurs with $C_2$-H of the imidazolium and S of $SO_2$. Experimental results further shows that the absorption and desorption process of $SO_2$ in ILs was reversible by the three cycles of the absorption at $50^{\circ}C$ and desorption at $140^{\circ}C$. The reversibility of $SO_2$ absorption was confirmed by FT-IR studies.
Keywords
Ionic liquids; $SO_2$ absorption; $SO_2$ solubility; Anionic effect;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Shelton, R. D.; Nielsen, A. H.; Fletcher, W. H. J. Chem. Phys. 1953, 21, 2178.   DOI
2 Maybury, R. H.; Gordon, S.; Katz, J. J. J. Chem. Phys. 1955, 23, 1277.   DOI
3 Ando, R. A.; Siqueira, L. J. A.; Bazito, F. C.; Torresi, R. M.; Santos, P. S. J. Phys. Chem. B 2007, 111, 8717.   DOI
4 Eisfeld, W.; Regitz, M. J. Am. Chem. Soc. 1996, 118, 11918.   DOI
5 Ma, X.; Kaneko, T.; Tashimo, T.; Yoshida, T.; Kato, K. Chem. Eng. Sci. 2000, 49, 4643.
6 Rao, A. B.; Rubin, E. S. Environ. Sci. Technol. 2002, 36, 4467.   DOI
7 Lee, K. Y.; Gong, G. T.; Song, K. H.; Kim H.; Jung, K. D.; Kim, C. S. Int. J. of Hydrogen Energy 2008, 33, 6031.   DOI
8 Rogers, R. D.; Seddon, K. R. Ionic Liquids: Industrial Applications to Green Chemistry; Oxford University Press: Washington, D.C., 2002.
9 Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H., Jr. J. Am. Chem. Soc. 2002, 124, 926.   DOI
10 Ren, S. H.; Hou, Y. C.; Wu, W. Z.; Fan, J. L.; Zhang, J. W. Ind. Eng. Chem. Res. 2009, 48, 4928.   DOI   ScienceOn
11 Yokozeki, A.; Shiflett, M. B. Energy & Fuels 2009, 23, 4701.   DOI
12 Yuan, X. L.; Zhang, S. J.; Lu, X. M. J. Chem. Eng. Data 2007, 52, 596.   DOI   ScienceOn
13 Wu, W.; Han, B.; Gao, H.; Liu, Z.; Jiang, T.; Huang, J. Angew Chem. 2004, 43, 2415.   DOI   ScienceOn
14 Huang, J.; Riisager, A.; Wasserscheid, P.; Fehrmann, R. Chem. Comm. 2006, 4027.
15 Prasad, B. R.; Senapati, S. J. Phys. Chem. B 2009, 113, 4739.   DOI
16 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, revision C.02, Gaussian, Inc., Pittsburgh, PA, 2004.