• Title/Summary/Keyword: Absorption system

Search Result 2,022, Processing Time 0.03 seconds

Physicochemical Properties and the Product Potentiality of Soft Wheats (연질밀의 품종별 이화학적 특성 및 제품의 제조적성)

  • Lim, Eun-Young;Chang, Hak-Gil;Park, Young-Seo
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-418
    • /
    • 2007
  • The physicochemical properties and mixograph characteristics of soft white winter (SWW) and club wheat, as well as their product potentiality, were investigated. There were no significant differences between the SWW wheat and club wheat regarding their Single Kernel Characterization System (SKCS) properties. The straight-grade flour yield, break flour yield, ash content, and milling score of the SWW wheat were similar to those of the club wheat, and the straight-grade flour yield had a significant positive correlation to the break flour yield (r = 0.805**). The Rapid Visco-Analyzer (RVA) peak viscosity and swelling volume of the SWW wheat flour were very similar to those of the club wheat flour, and there was a significant positive correlation between the RVA peak viscosity and the swelling volume (r = 0.662**). The average mixograph absorption of the SWW wheat was higher than that of the club wheat. The club wheat resulted in a higher cookie diameter than the SWW wheat, but the difference was not significant. The sponge cake volume using the SWW wheat flour was higher than that with the club wheat flour. In addition, there was a significant correlation between the cookie diameter and the sponge cake volume (r = 0.745**).

Preparation and Characterization of Cellulose Nanocrystals Reinforced Poly (vinyl alcohol) Based Hydrogels for Drug Delivery System (약물 전달 시스템 적용을 위한 셀룰로오스 나노크리스탈(CNCs) 강화 Poly(vinyl alcohol) 기반 하이드로겔의 제조 및 특성)

  • CHO, Hyejung;YOO, Won-Jae;AHN, Jinsoo;CHUN, Sang-Jin;LEE, Sun-Young;GWON, Jaegyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.431-449
    • /
    • 2020
  • Structural property of most hydrogels is soft, resulting in low mechanical performance that limits their usage in the biomedical applications. For overcoming the drawback, cellulose nanocrystals (CNCs) were adopted in this study. Effects of CNCs on characteristics and drug delivery performance of poly (vinyl alcohol) based hydrogels were explored. FT-IR results showed that the fabricated hydrogels had semi-IPN (semi-interpenetrating polymer network) by formation of acetal and aldehyde bridge. Water absorption and swelling ratio decreased with increasing CNCs content, and the hydrogels with CNCs showed better viscoelastic performance than the without CNCs. Also, CNCs mostly improved the ability of the hydrogel to absorb the drug and the sustainability of the drug release. These results demonstrated that incorporating CNCs into the hydrogel systems can be a good alternative to improve drug delivery performance and mechanical property of the hydrogels.

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF

Membrane-based Direct Air Capture Technologies (분리막을 이용한 공기 중 이산화탄소 제거 기술)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.

Stability and Sensory Evaluation of Naphthoquinone Pigments from the Roots of Lithospermum erythrorhizon (자근(紫根)으로부터 분리한 Naphthoquinone류 색소의 pH 안정성 및 관능검사)

  • Chung, Mi-Sook;Lee, Mie-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.152-156
    • /
    • 1994
  • The purplish red pigment from the roots of Lithospermum erythrorhizon, a Korean edible wild plant, has been investigated concerning it's value as a natural colorant for Korean traditional foods. An attempt was made to isolate pigments and define their characteristics. Two compounds of isobutylshikonin and acetylshikonin were identified by melting point determination and spectra of UV, IR, and $^{1}H-NMR$. To examine the utility of these naphthoquinone pigments for foods, the effect of various pH values on stability were determined over a period of storage. Buffered solutions of acetylshikonin and isobutylshikonin at pH 3 and 5 showed stable purplish red. The absorption maxima if acetylshikonin and isobutylshikonin over the range of pH 3 to 7 were 518 nm and 520 nm, respectively. A bathochromic shift to 588 nm at pH 10 was observed on these two naphthoquinone pigments. Sensory evaluation was performed with acetylshikonin and isobutylshikonin of identical absorbance. These two pigments revealed purplish red color in Munsell system.

  • PDF

The Development of Scrubber for F-gas Reduction from Electronic Industry Using Pressure Swing Adsorption Method and Porous Media Combustion Method (압력순환흡착법과 다공성 매체 연소법을 이용한 전자산업 불화가스 저감 스크러버 개발)

  • Chung, Jong Kook;Lee, Ki Yong;Lee, Sang Gon;Lee, Eun Mi;Mo, Sun Hee;Lee, Dae Keun;Kim, Seung Gon
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.181-187
    • /
    • 2017
  • The perfluorocompounds (PFCs) emitted from the semiconductor and display manufacture is treated by abatement systems which use various technologies, such as combustion, thermal, plasma, catalyst. However, it is required that the system should overcome their drawbacks with excess energy consumption and low removal efficiency. The new technology using combination of pressure swing adsorption and excess enthalpy combustion for the reduction of PFCs emissions were developed and analyzed its characteristics. PFCs concentration ratio and PFCs loss factor were calculated from measuring concentration of PFCs at the calculated by comparing concentration of PFCs at the combustor's inlet and outlet. There were performance evaluations with various gas flow for comparing energy consumption and removal efficiency with existing equipments. The concentration ratio and the loss factor of PFCs were 1.65, 8.2%, respectively, when the total gas flow of the pressure swing absorption (PSA) inlet was 204 liter per minute (LPM) and $CF_4$ concentration was 1412 ppm. In comparison with existing system at constant condition, $CF_4$ removal efficiency for a porous media combustion (PMC) showed the improvement more than 16% and the consumed energy was also reduced up to approximately 41%. Then, the total gas flow introduced into PMC and $CF_4$ concentration were 91-LPM and 2335 ppm, respectively, and the destruction and removal efficiency of $CF_4$ was about 96% at 19-LPM $CH_4$, and 40-LPM $O_2$.

The New X-ray Induced Electron Emission Spectrometer

  • Yu.N.Yuryev;Park, Hyun-Min;Lee, Hwack-Ju;Kim, Ju-Hwnag;Cho, Yang-Ku;K.Yu.Pogrebitsky
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.5-6
    • /
    • 2002
  • The new spectrometer for X-ray Induced Electron Emission Spectroscopy (XIEES) .has been recently developed in KRISS in collaboration with PTI (Russia). The spectrometer allows to perform research using the XAFS, SXAFS, XANES techniques (D.C.Koningsberger and R.Prins, 1988) as well as the number of techniques from XIEES field(L.A.Bakaleinikov et all, 1992). The experiments may be carried out with registration of transmitted through the sample x-rays (to investigate bulk samples) or/and total electron yield (TEY) from the sample surface that gives the high (down to several atomic mono-layers in soft x-ray region) near surface sensitivity. The combination of these methods together give the possibility to obtain a quantitative information on elemental composition, chemical state, atomic structure for powder samples and solids, including non-crystalline materials (the long range order is not required). The optical design of spectrometer is made according to Johannesson true focusing schematics and presented on the Fig.1. Five stepping motors are used to maintain the focusing condition during the photon energy scan (crystal angle, crystal position along rail, sample goniometer rail angle, sample goniometer position along rail and sample goniometer angle relatively of rail). All movements can be done independently and simultaneously that speeds up the setting of photon energy and allows the using of crystals with different Rowland radil. At present six curved crystals with different d-values and one flat synthetic multilayer are installed on revolver-type monochromator. This arrangement allows the wide range of x-rays from 100 eV up to 25 keV to be obtained. Another 4 stepping motors set exit slit width, sample angle, channeltron position and x-ray detector position. The differential pumping allows to unite vacuum chambers of spectrometer and x-ray generator avoiding the absorption of soft x-rays on Be foil of a window and in atmosphere. Another feature of vacuum system is separation of walls of vacuum chamber (which are deformed by the atmospheric pressure) from optical elements of spectrometer. This warrantees that the optical elements are precisely positioned. The detecting system of the spectrometer consists of two proportional counters, one scintillating detector and one channeltron detector. First proportional counter can be used as I/sub 0/-detector in transmission mode or by measuring the fluorescence from exit slit edge. The last installation can be used to measure the reference data (that is necessary in XANES measurements), in this case the reference sample is installed on slit knife edge. The second proportional counter measures the intensity of x-rays transmitted through the sample. The scintillating detector is used in the same way but on the air for the hard x-rays and for alignment purposes. Total electron yield from the sample is measured by channeltron. The spectrometer is fully controlled by special software that gives the high flexibility and reliability in carrying out of the experiments. Fig.2 and fig.3 present the typical XAFS spectra measured with spectrometer.

  • PDF

Effects of Lactobacillus acidophilus on innate immunity (선천성 면역에 대한 Lactobacillus acidophilus의 효과)

  • Kang, Shin-Seok;Byeon, Hyeon-Seop;Kim, Jeong-Tae;Lee, Ran;Kang, So-Jeong;Jung, Ho-Sung;Kang, Sung-Ho;Lee, Jae-Dong;Kim, Dong-Hee;Kang, Shin-Kwon
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.3
    • /
    • pp.235-243
    • /
    • 2011
  • Probiotics have many effects such as antihypertensive, prevention of cancer, antioxidation, reduction of dermatitis symptoms, improvement of mineral absorption, reduction of allergic symptoms, and decrease of cholesterol, However, the main role of probiotics is that they balance intestinal microbials proportion. L. acidophilus is one of probiotics and microflora in intestine. It has an acidification activity, aroma production, texture formation and probiotics properties. We studied on the roles of L. acidophilus in mice. In this study, body weights of mice were decreased when administration of L. acidophilus ($1{\times}10^{10}$ CFU) and swimming ability has been raised than a normal group after feeding on L. acidophilus ($1{\times}10^{10}$ CFU). After taking L. acidophilus ($1{\times}10^{10}$ CFU), total white cells were increased than a normal group; hemoglobin and thrombocytes were increased. The level of cholesterol and triglyceride were decreased in blood analysis. We knew L. acidophilus is related to innate immune system. We found out the secretion of cationic peptide was increased in the Lysoplate assays as a result of L. acidophilus ($1{\times}10^{10}$ CFU) administration. Appearance rate of lysozyme was also increased than the normal group on an immunohistochemistry stain. We confirmed L. acidophilus contributes to host health through innate immune system stimulation. L. acidophilus more than $1{\times}10^{10}$ CFU are thought to be beneficial for the host health and prevention of intestinal diseases in field condition.

Antioxidative Characteristics of Dihydroxyphenylalanine, Melanin and Enzymatic Browning Reaction Products of Tyrosine in a Model System (Dihydroxyphenylalanine, Melanin 및 Tyrosine의 효소적 산화반응생성물질의 항산화 특성)

  • Hong-Sik Cheigh;Soo-Hyoun Um;Hae-Gyoung Kim;Chang Y. Lee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.409-414
    • /
    • 1995
  • Antioxidative characteristics of dihydroxyphenylalalnine(DOPA), melanin and enzymatic oxidation products of tyrosine(EOPTs) were studied in a model system. EOPTs were prepared by the tyrosine-tyrosinase reaction at pH 6.5 and $25^{\circ}C$ at various time intervals(0~120min). All EOPTs were brown in varied intensities with increased absorption at 200~210, 280, 310~320nm, and 450~490nm. EOPTs obtaiend at the early stage of the reaction(1~3min especially) showed a higher antioxidative activity than those from the later stage on the inhibition of peroxide, conjugated dienoic acid and malonaldehyde formations in linoleic acid autoxidation. Additionally among the substances of tyrosine, DOPA and melanin, DOPA showed the highest antioxidative activity while that of tyrosine was the lowest during the linoleic acid autooxidation. It was observed that DOPA and melanin had the ability of free radical scavenging, which may party contribute to their antioxidative activity.

  • PDF

Establishment and Validation of Gold Amalgamation Method for the Quantitation of Thimerosal in Biological Products (생물학적제제의 치메로살 함량 정량을 위한 가열기화 아말감 흡광도법의 확립 및 검증)

  • Kim, Byung-Chul;Kim, Do-Keun;Hong, Sung-Hwa;Kim, Yeon-Hee;Lim, Jong-Mi;Won, Yun-Jung;Kim, Seok-Hwan;Hong, Ji-Young;Yun, Young-Min;Kim, Jae-Ok
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.284-288
    • /
    • 2011
  • The test method for biologics of lot release system is based on 'Test procedure and specification for biological products,' generally, thimerosal content is measured by chemical analysis using O.D. In this study, the comparative analysis was carried out using the gold amalgamation method for thimerosal content was compared to the existing methods, which are described above. The gold amalgamation method, which uses atomic absorption spectrophotometry, was meets all the method validation acceptance criteria. It is considered to be proper as the assay and identification test for thimerosal. In this study, the comparative analysis was performed three times. As a result, gold amalgamation method is more convenient and easy to perform as this assay doesn't have pre-treatment procedure. Also this assay showed good precision and reproducibility compared to the conventional method. Therefore, it is appropriate to alternate the assay method of thimerosal from the conventional chemical analysis to gold amalgamation method to improve the credibility of lot release system and the quality control of biologics, by standardizing test method.