• Title/Summary/Keyword: Absorption ratio

Search Result 1,746, Processing Time 0.036 seconds

Durability of High-Fluidity Polymer-Modified Mortar (고유동 폴리머 시멘트 모르타르의 내구성)

  • Yoon Do Yong;Lee Youn Su;Joo Myung Ki;Jung In Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.691-694
    • /
    • 2004
  • The effects of polymer-cement ratio and antifoamer content on the setting time and durability of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio, regardless of the antifoamer content. The water absorption and chloride ion penetration depth of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The water absorption and chloride ion penetration improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder.

  • PDF

A Numerical Investigation of Hydrogen Absorption Reaction Based on ZrCo for Tritium Storage (I) (삼중수소 저장을 위한 ZrCo 저장재에서의 수소 흡장에 대한 수치해석적 연구 (I))

  • Yoo, Haneul;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.448-454
    • /
    • 2012
  • In this paper, a three-dimensional hydrogen absorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 99% hydrogen charging time. The equilibrium pressure expression for hydrogen absorption on ZrCo is derived as a function of temperature and the H/M atomic ratio based on the pressure-composition isotherm data given by Konishi et al. In addition, this present model provides multi-dimensional contours such as temperature and H/M atomic ratio in the thin doublelayered annulus metal hydride region. This numerical study provides fundamental understanding during hydrogen absorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen charging performance. The present three-dimensional hydrogen absorption model is a useful tool for the optimization of bed design and operating conditions.

NOx Reduction Performance in Cement Mortar with TiO2 Treatment and Mineral Admixture (무기계 혼화재료를 혼입한 모르타르 시편의 광촉매 처리를 고려한 NOx 저감 성능)

  • Yoon, Yong-Sik;Kim, Hyeok-Jung;Park, Jang-Hyun;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.506-513
    • /
    • 2020
  • In this study, the mechanical properties, absorption, and reduction performance of NOx in the mortar containing mineral admixture like zeolite and active hwangtoh were evaluated. Zeolite and active hwangtoh were used as binder, and zeolite and active hwangtoh were substituted for cement. The substitution ratio of two types of mineral admixtures was considered as 20 and 30% respectively. As a result of evaluating the compressive strength and flexural strength of each mortar specimen, the highest strength in the plain mixture was evaluated. As the substitution ratio of zeolite and active hwangtoh increased, the compressive and flexural strength decreased. In addition, the difference of compressive and flexural strength between active hwangtoh and zeolite mixing was evaluated to be insignificant. To evaluate the absorption rate, the mixture was designed to lower the W/B ratio of the existing mixture and set the substitution ratio of active hwangtoh and zeolite at 25%. The highest absorption ratio in the mortar with zeolite was evaluated, and the difference in absorption ratio between the remaining two mortar mixtures was small. The assessment of reduction performance of NOx considering the application of photocatalyst showed a clearly decreasing reduction behavior, even if they were the same mortar mixture. Zeolite and active hwangtoh also showed a higher NOx reduction than the Plain mixture, because of their porosity properties. In the case of active hwangtoh, the absorption ratio was lower than that of zeolite mixture, but the reduction of NOx performance was better than the result of zeolite mixture.

Studies on the Durability of Mortars (모르타르의 내구성에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1604-1615
    • /
    • 1969
  • This experiment was carried out as one of the basic studies to improve the acid resistance of concrete and it was conducted to investigate some relations among physical properties such as basorption, ratio of water to cement, compressive strength, density and ratio of mix to weight losses of mortar when exposed to 0.1 N solution of hydrochrolic acid. The results obtained from the limited data secured so far in this experiment are summarized as follows: 1. The specimens used in the experiment were made of 5 cubic centimeters of mortar having such various ratios of mix by weight as 1 : 1, 1 : 3, 1 : 5, 1 : 7, 1 : 10. 2. Physical tests included compressive strengths at 7 days, 28 days, 3 months, and 6 month, and 5 hour boiling absorption test. 3. In acid test, every specimen was immersed into 0.1 N solution of hydrochrolic acid. The specimens exposed to the acid solution were weighed to determine the weight losses of the acid-corroded at one week interval for 7 weeks exposure, and the old acid solutions were also changed to fresh one when weighed the weight losses by acid attack at one week interval. 4. The correlative relations were found among physical properties and they are expressed by certain formulas as follows; i) Relation between ratio of mix and absorption Y = 1.036x + 13.53 where Y: absorption(%) X: ratio of mix ii) Relation between ratio of mix and ratio of water-cement Y = 0.204x + 0.214 where Y: ratio of water-cement. X: ratio of mix iii) Relation between ratio of water-cement and absorption Y = 5.01x + 12.53 where Y: absorption(%). X: ratio of water-cement iv) Relation between density and absorption Y = 50.6 - 0.0176X where Y: absorption(%). X: density($kg/m^3$) v) Relation between density and ratio of water cement Y = 7.2183 - 0.0033X where Y: ratio of water-cement . X: density($kg/m^3$) 5. After completing the acid exposure test the specimens were corroded and , the per cent ranges of weight losses varies from a minimum of 20.4 per cent at a 1 : 1 mix to a maximum of 92.0 per cent at a 1:10 mix 6. The correlative relations of physical properties of mortar to weight losses by acid attak were found and they are also expressed by certain formulas as follows: i) Relation between weight losses and ratio of mix Y = 8.59X + 8.63 where Y: weight losses(%), X: ratio of mix ii) Relation between wieght losses and absorption Y = 0.121x + 12.43 where Y: absorption(%). X: weight losses(%) iii) Relation between weight losses and ratio of w/c Y = 0.0226X + 0.07 where Y: ratio of w/c X: weight losses(%) iv) Relation between weight losses and compressive strength LogY = 3.6097 - 0.05058X + 0.00022$X^2$ where Y: compressive strength ($kg/cm^3$) X: weight losses(%) v) Relation between weight losses and density Y = 2153.1 - 6.62X where Y: density($kg/m^3$) X: weigh losses(%) 7. In order to make better acid resistant mortar, it could be concluded that a 1 : 3 mix or richer mixes, adequate mixing water to minnimize the ratio of water-cement considering the workability, 16 per cent or less absorption by 5 hour boiling water, 1,800 kilogram per cubic meter or denser density by absolute weight base and 200 kilogram per square meter or compressive strength at 20 day, etc are required so as to obtain acid-resistant mortar. In addition to the above, it might be recommonded to select the fine aggregate and to use better equipments such as a mechanical vibrator, a mechanical mixer etc. in concrete manufacturing works.

  • PDF

Sound Absorbing Characteristics of Porous Concrete Using Recycled Aggregates (재생골재를 사용한 포러스 콘크리트의 흡음특성에 관한 연구)

  • 서대석;박승범;김정환;표구영;김범규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.485-488
    • /
    • 2003
  • The results of an experiment on the sound absorption of the porous concrete using recycled aggregates and its influence on the compressive strength are reported in this paper. The content of recycled aggregate of 0, 10, 30, 50 and 70%, and the design void ratio of 30 percent for a given size of aggregate were used. In the compressive strength, an aggregate of the size of 5~13mm is much higher strength than that of the 13~20mm, In sound absorption experiment, the sound absorption ratio was is subjected to decreased as the content of recycled aggregates was increased. As a result, Porous concrete using recycled aggregates and by-products sufficiently have the performance of sound absorption.

  • PDF

An experimental study on Influence of Permeability on corrosion of reinforced Concrete (철근콘크리트의 부식에 영향을 미치는 물질 투과성능에 관한 실험적 연구)

  • 김용로;김영덕;조봉석;장종호;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.62-65
    • /
    • 2003
  • In this study, to confirm corrosion of reinforced concrete affected by carbonation, chloride ion diffusion, absorption ratio, air permeability, measured carbonation velocity coefficient, chloride ion diffusion coefficient, absorption coefficient, air permeability coefficient. Corrosion velocity under environment of complex deterioration. And than compared corrosion velocity with these coefficients. As the results of this study, the correlation coefficient between chloride ion diffusion coefficients and absorption coefficient was revealed that it is very high. As well, an increase in carbonation, chloride ion diffusion also increases corrosion velocity. It showed that corrosion velocity was affected by the carbonation, chloride ion diffusion, absorption ratio, air permeability. Generally, data on the development of these coefficient made with none, organic B, organic A, inorganic B, and inorganic A is shown. It showed that coating of surface prevent steel bar from deteriorating.

  • PDF

An Experimental Study on the Physical Characteristics of Cement Mortar with Cellulose Fiber and Diatomite (목질섬유 및 규조토 혼입 시멘트 모르터의 물성에 관한 실험적 연구)

  • 김경민;박석근;이수용
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.103.2-108
    • /
    • 2003
  • The purpose of this study is to understand the Physical characteristics of cement mortar about humidity control on indoors and wall crack restraint. Experiments were conducted on the strength, water absorption coefficient, drying-shrinking crack, length change, cracks of mortar plaster bases according to mixture rate by mixing cellulose fiber and diatomite into cement mortar. The excellent tensile & bending reinforcement efficiency of cellulose fiber and void filling ability of diatomite proved to be suppressing cracks of cement. And diatomite seems to improve moisture-protection efficiency of cement mortar because of its high water absorption ratio and slow drying speed.

  • PDF

Measurement of excited species in discharges using Laser Absorption spectroscopy

  • Sakai, Yosuke
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.5-8
    • /
    • 2000
  • The population density of excited species in dc, rf and laser ablation plume plasmas has been measured using laser absorption spectroscopy. It was shown that, when the plasma was modulated by on and off with, the sensitivity and signal to noise (S/N) ratio became high. For example, the atomic O(3$^{5}$ S$^{o}$ $_2$) Population density, No* in $O_2$/He mixtures was obtained by the highest S/N ratio at a frequency of 2.7kHz. In a 20Torr room air, the lowest No* level to be detectable was shown to be an order of 10$^{7}$ cm$^{-3}$ . The population densities of resonance Ar(1S$_2$) and Xe(1S$_4$) levels were also measured in barrier discharges and laser ablation plasmas.

  • PDF

INFRARED ABSORPTION MEASUREMENT DURING LOW-TEMPERATURE PECVD OF SILICON-OXIDE FILMS

  • Inoue, Yasushi;Sugimura, Hiroyuki;Takai, Osamu
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • In situ measurement of infrared absorption spectra has been performed during low-temperature plasma-enhanced chemical vapor depositiion of silicon-oxide films using tetramethoxysilane as a silicon source. Several absorption bands due to the reactant molecules are clearly observed before deposition. In the plasma, these bands completely disappear at any oxygen mixing ratio. This result shows that most of the tetramethoxysilane molecules are dissociated in the rf plasma, even C-H bonds. Existence of Si-H bonds in vapor phase and/or on the film surface during deposition has been found by infrared diagnostics. We observed both a decrease in Si-OH absorption and an increase in Si-O-Si after plasma off, which means the dehydration condensation reaction continues after deposition. The rate of this reaction is much slower than the deposition ratio of the films.

  • PDF

Structural and optical properties of $CuInS_2$ thin films fabricated by electron-beam evaporation (전자빔 증착으로 제조한 $CuInS_2$ 박막의 구조적 및 광학적 특성)

  • Park, Gye-Choon;Jeong, Woon-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.193-196
    • /
    • 2001
  • Single phase $CuInS_2$ thin film with the highest diffraction peak (112) at diffraction angle $(2\theta)$ of $27.7^{\circ}$ and the second highest diffraction peak (220) at diffraction angle $(2\theta)$ of $46.25^{\circ}$ was well made with chalcopyrite structure at substrate temperature of $70^{\circ}C$, annealing temperature of $250^{\circ}C$, annealing time of 60 min. The $CuInS_2$ thin film had the greatest grain size of $1.2{\mu}m$ and Cu/In composition ratio of 1.03. Lattice constant of a and c of that $CuInS_2$ thin film was 5.60 A and 11.12 A respectively. Single phase $CuInS_2$ thin films were accepted from Cu/In composition ratio of 0.84 to 1.3. P-type $CuInS_2$ thin films were appeared at over Cu/In composition ratio of 0.99. Under Cu/In composition ratio of 0.96, conduction types of $CuInS_2$ thin films were n-type. Also, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of p-type $CuInS_2$ thin film with Cu/In composition ratio of 1.3 was 837 nm, $3.0{\times}104cm^{-1}$ and 1.48 eV respectively. When Cu/In composition ratio was 0.84, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of n-type $CuInS_2$ thin film was 821 nm, $6.0{\times}10^4cm^{-1}$ and 1.51 eV respectively.

  • PDF